
www.manaraa.com

INFORMATION TO USERS

While the most advanced technology has been used to
photograph and reproduce this manuscript, the quality of
the reproduction is heavily dependent upon the quality of
the material submitted. For example:

• Manuscript pages may have indistinct print. In such
cases, the best available copy has been filmed.

• Manuscripts may not always be complete. In such
cases, a note will indicate that it is not possible to
obtain missing pages.

• Copyrighted material may have been removed from
the manuscript. In such cases, a note will indicate the
deletion.

Oversize materials (e.g., maps, drawings, and charts) are
photographed by sectioning the original, beginning at the
upper left-hand comer and continuing from left to right in
equal sections with small overlaps. Each oversize page is
also filmed as one exposure and is available, for an
additional charge, as a standard 35mm slide or as a 17”x 23”
black and white photographic print.

Most photographs reproduce acceptably on positive
microfilm or microfiche but lack the clarity on xerographic
copies made from the microfilm. For an additional charge,
35mm slides of 6”x 9” black and white photographic prints
are available for any photographs or illustrations that
cannot be reproduced satisfactorily by xerography.

www.manaraa.com

www.manaraa.com

8712162

Leventhal, Laura M arie

PERCEPTION OF SOFTWARE QUALITY: AESTHETICS AND EXPERTISE

The University of Michigan Ph.D. 1987

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Copyright 1987

by

Leventhal, Laura Marie

All Rights Reserved

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages______

2. Colored illustrations, paper or print_______

3. Photographs with dark background_____

4. Illustrations are poor copy_______

5. Pages with black marks, not original copy______

6. Print shows through as there is text on both sides of p a g e _______

7. Indistinct, broken or small print on several pages t /

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine_______

10. Computer printout pages with indistinct print_______

11. Page(s)___________ lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages num bered . Text follows.

14. Curling and wrinkled pages______

15. Dissertation contains pages with print at a slant, filmed a s received

16. Other

University
Microfilms

In te rn a t io n a l

www.manaraa.com

www.manaraa.com

PERCEPTION OF SOFTWARE QUALITY:
AESTHETICS AND EXPERTISE

by

Laura Marie Leventhal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer and Communication Sciences)

in The University of Michigan
1987

Doctoral Committee:

Professor Stephen Kaplan, Chairman
Associate Professor Larry K. Flanigan
Professor John Holland
Professor Rachel Kaplan
Assistant Professor Terry Weymouth

www.manaraa.com

www.manaraa.com

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations submitted
to The University of Michigan and made available through University Micro
films International or The University of Michigan are open for inspection,
but they are to be used only with due regard for the rights of the author.
Extensive copying of the dissertation or publication of material in excess
of standard copyright limits, whether or not the dissertation has been
copyrighted, must have been approved by the author as well as by the Dean
of the Graduate School. Proper credit must be given to the author if any
material from the dissertation is used in subsequent written or published
work.

www.manaraa.com

© Laura Marie Leventhal
All Rights Reserved

1987

www.manaraa.com

For Brian

ii

www.manaraa.com

ACKNOWLEDGMENTS

Of the many people who contributed to aspects of this dissertation, I would

like to specifically acknowledge the contributions of a few. My family has been a

bottomless well of support. My husband, Alan Jaffee has undoubtedly given up a

piece of his life in the preparation of this document. My mother, Zella Jones

Leventhal, has provided not only support but practical assistence as well, by
baby and dogsitting. My son, Brian continues to remind me that things, not

related to work and dissertations, deserve attention and provide joy.

I have had the privilege of participating in the "Friday Seminar." The

members of this group have generously shared their insights with me and been
willing to listen to my ideas as well.

The members of my committee have helped me in many ways. Larry

Flanigan is, without a doubt, the best teacher that I had while I was a graduate

student. I appreciate his comments which relate this work to teaching. John

Holland's original ideas, particularly at the beginning of this project, were
thought-provoking and helpful. Terry Weymouth seemed to be especially

sensitive to what this process has been like for me. I have special thanks for

Rachel Kaplan for her generous participation on my committee at a late date and

also for providing the starting point for this work with her designers and "clients"

study.

Thanks also to Larry Dunning and John Townsend for the opportunity to

collect data from their students and to the numerous students who voluntarily

participated in the study. Thanks to Janet Talbot for her critical assistance in the

data analysis in this study.

Most especially however, I feel gratitude to two special people. My

association with Steve Kaplan has been one of the best things to come out of my

graduate experiences. Not only has he shared his ideas, which form a basis for

this work, but he has freely shared his time and insights as well. His interest in

both my professional and personal well-being is greatly apprecicated.

www.manaraa.com

My father, Donald Leventhal, is not here to see the completion of this

dissertation or my graduate work. However I have felt throughout this long

process a strong connection with the innumerable things which I learned from

him. in particular, I have often thought of him, searching through the rubble left
by a tornado, for his dissertation which had been already been completed for

many years.

www.manaraa.com

TABLE OF CONTENTS

DEDICATION.. ii

ACKNOWLEDGMENTS.. iii

LIST OF FIGURES..vii
LIST OF TABLES... viii

LIST OF APPENDICES..ix
CHAPTER

I. AESTHETICS AND EXPERTISE:
TWO CENTRAL ISSUES IN COMPUTER SCIENCE.............................. 1

Empirical Study of the Issues: A Necessity
Statement of the Problem
Some Outcomes of this Study
Summary

II. AESTHETICS AND EXPERTISE: A THEORETICAL MODEL..................6

Research in Expertise: The Role of Problem Representation
Environmental Preference: An Informational Theory

Appropriate for Computer Science
Problem Representation and Preference: What is the

Connection?
Summary - Problem Representations and Preference
Notes to Chapter II

III. DESCRIPTION OF METHODOLOGY AND TEST INSTRUMENT. . . .21

Description of Chosen Methodology
Selection of Experimental Unit
Selection of Content of the Test Instrument
Description of the Data Collection Procedure
Description of the Problems and Solutions
Summary of Methodology, Test Instrument, and Procedure
Notes to Chapter III

v

www.manaraa.com

IV. PREDICTION OF AESTHETICS IN EXPERTS AND NOVICES 39

Analyses
Results
Preference and Problem Representations
Summary
Notes to Chapter IV

V. PERCEPTUAL CATEGORIES: EXPERTS...48

Expert Factor Structure
Relation of Categories to Preference
Expert Categories and Environmental Preference Framework
Summary
Notes to Chapter V

VI. PERCEPTUAL CATEGORIES: NOVICES...62

Novice Factor Structure
Relation of Categories to Preference
Novice Categories and the Environmental Preference Framework
Summary
Notes to Chapter VI

VII. REVIEW, CAUTIOUS APPLICATIONS, AND CONCLUSIONS.. . . 75

Review of Results
Review of Themes
Some Cautious Applications
Conclusion

APPENDICES .
BIBLIOGRAPHY

.84

133

www.manaraa.com

LIST OF FIGURES

Figure

4.1. Prediction Framework for independent variables.......................................41

4.2 Partial Correlations for Experts and Novices using prediction framework

from Figure 4 .1 .. 43

5.1 Preference Framework for Experts.. 59

6.1 Preference Framework for Novices..72

A.1 Similarities and Differences between Current Study and
Soloway and Ehrlich (1984)..89

www.manaraa.com

LIST OF TABLES

Table

2.1. Kaplans' Model of Environmental Preference..14
3.1 Construct Affordances and Violations.. 27

3.2 Matrix Rotate Items...32
3.3 Sorting Items... 32

3.4 Main Procedure Items..34

3.5 Numerical Calculation Items.. 36

3.6 Searching Items... 36

5.1 Expert Factor Characteristics... 50

5.2 Mean Preference Levels for Expert Categories..54

6.1 Novice Factor Characteristics... 63
6.2 Mean Preference Levels for Novice Categories..67
A.1 Details of Discourse Rule Violations... 87

www.manaraa.com

LIST OF APPENDICES

Appendix

A. Unsuccessful Analyses.. 85

B. Sample Task Item.. 90

C. Sample Characteristics... 125

D. Derivation cf Predicticn Framewcrk... 128

E. Facsimile of Data Used in Analysis of Covariance .129

F. Analysis of Covariance for Two Subject G roups.................... 131

G. Expert and Novice Factor Loadings...................................... 132

ix

www.manaraa.com

CHAPTER I

AESTHETICS AND EXPERTISE: TWO CENTRAL ISSUES IN

COMPUTER SCIENCE

That expertise is a relevant theoretical and practical issue in computer

science and related domains is no surprise. Experts write software systems and

manuals for use by non-experts. Experts provide both the leadership and the

materials for the education of non-experts. Experts even develop software

systems, like word processors, so that the performance of the novice may
approximate that of an expert.

That aesthetics is a useful notion is certainly no surprise to practitioners in

computer science either. Within the discipline there appears to be widespread

agreement that computer-related products, particularly software systems often

have an "artlike" quality, (e.g., Bentley, 1986). Aesthetic issues appear to span

both computer science education (e.g., a popular introductory text by Savitch,

1984, is entitled PASCAL: An Introduction to the Art and Science of

Programming) and practice (e.g., Bentley’s "Programming Pearls" column in the

widely-read Communications of the ACM is devoted to issues of elegance in

software).

The interaction between expertise and aesthetics is an especially

interesting and relevant issue for computer scientists. For instance, since

computer science experts are responsible in large measure for so many types of

computer systems, their preferences, of course, have the potential to have a

tremendous influence on both products experienced by end-users and the

computer-product marketplace. Consider:

In 1975, Steve Jobs and Steve Wozniak started the Apple
Computer Company in Jobs’ parents' garage. By 1985,

1

www.manaraa.com

2

the company had grown to a 2 billion dollar company.
Then Jobs was forced out of the company.

Among the descriptions of Jobs' fall, one of the most
striking involves decisions for the design of the Apple
Macintosh. The Macintosh was designed to be a business
computer. Jobs however refused to put fans into the
Macintosh or any other Apple computer; yet, fans are
required to support the storage demands of an office
computer. The reason - fans, in Jobs' opinion resulted in
an inelegant design, (my italics; Gelman, et al., 1985)

It seems clear that aesthetic considerations permeate much of the work of

computer science experts. To learn more about the interaction of these two

issues would appear to have a special urgency for the practice of computer
science.

Empirical Study of the Issues: A Necessity

Aesthetics and aesthetics-related terms have entered into the everyday

language of computer science, but the nature of such an aesthetic remains

virtually unexplored. As in the more general realm of the human-computer

interface (cf. Shneiderman, 1979; Sengler, 1983; Hagglund and Tibell, 1983;

Arblaster, 1983; Maass, 1983), what one finds instead are many examples of

unsubstantiated guidelines (cf. Cooperand Clancy, 1982) and folklorish beliefs.

For example, a common belief in the popular folklore of computer science is that

the style of each computer science expert is an individual signature.

However, within the discipline, several authors have called for a different

approach to issues of the human-computer interface. Under this alternative,

models of behavior, based on empirical research, would be widely-familiar and

available for practioners (cf. Moran, 1981). A move toward this approach seems
to be an absolute necessity within computer science. As an example, these

issues could be incorporated into software engineering courses. A recent survey

of content in undergraduate software engineering courses indicated that human

interface issues are perceived by software engineering instructors to be a focal

point in a typical course (Leventhal and Mynatt, in press) Unfortunately, few

www.manaraa.com

3

software engineering texts address these issues at all! It would appear that

computer science educators are relying on materials of questionable quality or

validity in the training of future computer scientists. This apparently ad hoc

treatment of human issues is potentially devastating if in fact this is the type of

information which most professionals are acquainted with.

Of all the human interface issues, none seem s to be more folklorish than

that of aesthetics, particularly the aesthetics of computer science experts.

However, as researchers in a variety of other disciplines have demonstrated,

aesthetic issues can be studied empirically. In particular, as this study will

demonstrate, it is possible to cast issues of the nature of aesthetics for both
computer science experts and novices into the framework of empirical research.

As in any study of human-computer issues, the investigation of aesthetic
issues is made more difficult by the nature of the research environment. On the

one hand, the computer scientists who are most familiar with the issues in a

practical sense are typically unprepared by their training to conduct meaningful

experiments. Numerous critiques of empirical work in the field find the work

characterized by misuse of statistical tools, use of inappropriate stimuli, use of

inappropriately small samples, and use of inappropriate subject groups (cf.
Sheil, 1981; Brooks, 1980; Moher and Schneider, 1981,1982; Sayward, 1984;

Cioch, 1985). By contrast, trained experimenters, such as experimental

psychologists often have only a surface level understanding of the scope of or

importance of issues in computer science. These difficulties suggest that a
reasonable study of behvioral issues, such as aesthetics and expertise, must be

interdisciplinary in nature. Studies of this type must at once preserve a rigorous

methodological approach and a sensitivity to the relevant computer science

variables.

Statement of the Problem

The purpose of this study is to explore the relationships between aesthetic

issues and expertise levels in a rigorous, experimental fashion. The purpose of

the study is twofold: 1. To identify patterns of aesthetic preference in a computer

www.manaraa.com

4

science setting and 2. To investigate the interaction between these patterns of

preference and increasing levels of expertise in computer science.

Since the role of aesthetics and its interaction with computer science

expertise remains virtually unexplored, there are few precedents on which to
base a study of these issues. Two issues are particularly challenging in this

setting: 1. Identification of an appropriate theoretical framework in which to base

such a study and 2. Selection of an appropriate methodology and experimental
materials.

Identification of an appropriate theoretical framework has been hindered

by the folklorish nature of computer science aesthetics and expertise. One is

forced instead to consider theoretical models which have been posed outside of

the discipline. In Chapter II, a model of expertise and a model of aesthetics and

preference are discussed separately. Some potential interactions, consistent

with both theories and some experimental work, are then described.

Selection of an appropriate methodology and experimental materials is

also made difficult given the lack of relevant precedents in this area. One is

forced to redefine methodologies from outside computer science into uniquely

computer science forms. Chapter III describes both the selected methodology
and form of the stimulus.

Some Outcomes of this Study

It is clear that within the folklore of computer science, aesthetics,

particularly in the hands of experts is a real and relevant issue. In practice,

experts play vital roles in the education of and communication with non-experts,

as well as being the principal providers of software products. Yet even experts

themselves are often unaware of the ways in which they differ from novices.

(Kaplan, 1977; Kaplan and Kaplan, 1982) Identifying differences between the

groups has far-reaching implications for both the development of new experts

and the interactions between novices and experts.

A second, noteworthy consequence of a study of this type relates to a

constant yet implicit theme throughout this document. In the experience of this

www.manaraa.com

5

author and others, (cf. Molzberger, 1984) computer science professionals

consider themselves to be artists. To someone outside of the field this is likely to
seem to be a ludicrous idea, given the apparently rigorous and rational nature of

the tasks in the discipline. Identifying measurable components of aesthetics in
computer science is a sort of justification and confirmation for professionals in the

domain that they are more than just technocrats.

Summary.
In any field, high quality work is marked by a concern for aesthetics (cf.

Hamming,1981). Aesthetic considerations distinguish elegant work from that

which is merely adequate. In computer science, aesthetic judgements have not

often been acknowledged by experimenters. That practitioners know differently

is demonstrated in both the folklore of the discipline and in the emphasis in

computer science education on issues of style. Experts under the influence of

aesthetics often make decisions with far-reaching consequences.

This study is a first step towards the development of a model of computer

science aesthetics and the interaction with expertise level. Such a model is

potentially applicable in many ways within the discipline. This opportunity to

unite empirical research and practice offers the exciting potential both to extend

general understanding of the human-computer interface and to enhance experts'
understanding of themselves.

www.manaraa.com

CHAPITER II

AESTHETICS AND EXPERTISE: A THEORETICAL MODEL

What constitutes an appropriate study of aesthetics and expertise in

computer science? Before trying to combine the themes of expertise and

aesthetics in the context of computer science, it may be useful to explore them

separately. Since work in these domains is sparse within computer science, one

must turn elsewhere for theoretical models and then determine their applicability
to the present situation.

Researcb in Expertise: The Role of Problem Representation

One of the strongest themes to emerge from expertise research is that
experts focus much of their problem solving activity on the formation of an

adequate problem representation. Several authors have suggested that the
quality of the problem representation is a determining factor in the ease of

problem solving (cf. Hayes and Simon, 1976; Newell and Simon, 1972) A

problem representation is an internal model of the problem; it may include

information about the problem itself, alternate formulations of the problem,

problem constraints, solution strategies, and solution information.

Formation of a complex representation requires two types of activities by the

expert. The expert must be able both to recognize salient environmental

information and to refine the problem representation until it is adequate.

Recognizing Environmental Patterns

The expert must be able to recognize the salient environmental patterns in

6

www.manaraa.com

7

order to build a useful problem representation. Many studies of expertise

indicate that with increasing experience experts develop a powerful perceptual

facility. De Groot's early work in this area examined expertise in chess. It

provided the technique for the first experimental studies of computer science

experts (cf. Shneiderman, 1976; McKeithen, Reitman, Reuter, and Hirtle, 1981;

Egan and Schwartz, 1979). In the computer science version of this methodology,

the subject is typically presented with programs for a short time period. The

program statements are arranged in either meaningful or random order. After the

presentation, the subject is asked to reconstruct the program statements. The

computer science experts show superior performance when presented with

statements in meaningful order; the performance by the expert is degraded to the
level of the novice in the random order condition.

The results of these studies indicate that computer science experts rely, at
least in part, on highly-developed pattern recognition processes, rather than on

logicaily-guided retrieval processes. The facility of experts to process meaningful

information during the short duration of the experimental task is highly suggestive

of this conclusion.

In recognizing salient patterns, the expert is able to ignore distracting,

irrelevant information. This was demonstrated by Soloway, Ehrlich, and Bonar

(1982) who asked experts and novices to fill in a missing line of code in

presented programs. Some of the programs contained a superfluous line of

code. The performance of the novices was degraded in the presence of noise;

the performance of the experts was unaffected. This result suggested that the
experts selected the salient stimuli and completed the task. The line of noise

presumably was not included in the resulting expert problem representations.

Refining the,Problem Representation
The expert must also be able to manipulate the problem representation

until it reaches an appropriate form. Jeffries, et al. (1981) traced the development

of a software system from problem statement to a solution. The primary focus of

www.manaraa.com

8

this research was the process of development of problem representations.

Models of the experts were found to incorporate more global constraints and

alternatives than those of the less expert. These constraints and alternatives

affected the way that the experts interpreted the problem.

The experts in this study used a "top-down" strategy to decompose the
problem into parts. This strategy was repeated on problem subparts several

times before program code was actually generated. In contrast, the advanced

novices were able to break the problem into meaningful subunits, but were

unable to repeatedly decompose the subunits. The novices developed an
outline of the steps for the solution and then developed program code. The

prenovices simply generated program code. These results suggest that the

experts developed sophisticated problem representations before they generated

a solution. One can infer that the top-down decompostion strategy allowed the

experts to "fill in" the detailed constraints in the problem. The novices and

pre-novices, lacking a rich representation, had no choice but to develop a
solution directly from the problem statement.

Voss , Tyler, and Yengo (1983) reported similar results from their collected

verbal protocols of novices and experts solving a political science problem. Their

problem was typical of political science problems; it was open-ended, with no
single correct answer.

Like the computer science experts in the Jeffries study, political scientists

appeared to spend a great deal of time forming a problem representation when

they were solving a problem in their area of specialization. These experts

developed constraints for the problem. These constraints were then used to

bound the problem. Not surprisingly, the representations of these experts were

heavily influenced by the constraints of the problem. The experts proposed

solutions which were more abstract than the solutions of novices.

Since the solutions to the problem were never clearly right or wrong, the

experts spent much of their time generating rationales for their solution. Their

arguments were attempts to show that their solution was both workable and

www.manaraa.com

9

feasible.

In contrast, the novices did not focus on the construction of a problem

representation. The problem representations reflected little consideration of

constraints. The novices showed little argument development and the arguments

relied on general knowledge of logic and psychology to justify claims. The

solutions which were generated were simpler than those of the experts.

The experts in the Voss, et al. study resembled the computer science

experts in their focus on the formation of a problem representation. However,

unlike the protocols of computer science experts, the protocols of political

scientists showed extensive argument development. Voss and his associates

attributed this emphasis on argument to the open-ended nature of the problem,

rather than to differences between political science and other domains. This

conclusion seems reasonable, especially in light of the apparently universal

focus on problem representation among experts across numerous domains

Larkin's (1983) collected verbal protocols from physics experts are further
indication that experts may refine their problem representations extensively

before finding a final solution. Her protocols indicated that experts often reject

potential hypotheses before the hypotheses are fully developed into a final form.
She reported that physics experts, in solving medium-difficulty problems,

selected the entities of their preliminary problem representation quickly. The first

representation was replaced by another when it was found to be unacceptable.

Once experts have formed an adequate representation, a specific problem

solution usually follows in a straightforward way. Larkin (1983) reported that

experts who were solving relatively difficult problems generated the proper

physics solution (equations) only after they had developed complex

representations of the problems.

Components of Expert Problem Representations

Not only does the complexity of problem representations appear to
increase with increasing expertise, but the entities in expert problem

www.manaraa.com

1 0

representations seem to differ from those of novices. In particular, the

components become increasingly abstract. For example, Kahney (1983) used

two functionally equivalent recursive programs which were syntactically different.

Both of the programs satisfied the stated requirements in the experiment. Experts

were able to recognize that both programs were satisfactory; novices were only

able to identify the obvious solution. These results suggests that the experts

focused on the abstract functional properties of the programs rather than the
syntactic level details.

Adelson (1984) examined the interaction of abstractness and expertise by

using a comprehension task. Expert programmers were better able to answer

questions about the function of programs; novices dealt more effectively with

questions about the specific ways that the programs worked. Experts who were

provided with a program and a description of how the program worked were able
to answer both abstract and concrete questions with no significant differences.

When delays were introduced between the presentation of the program and
description, and the comprehension task, experts again performed better on the

abstract questions than on the concrete questions. The novices, on the other
hand, performed better with the concrete questions.

Several other studies in computer science, physics, and mathematics
suggest that increasing expertises is accompanied by decreasing specificity

(Weiserand Shertz, 1983, Soloway, Ehrlich, Bonar, 1982, Chi, Feltovich, and
Glaser, 1981, and Lewis, 1981).

Summary: Expertise and Problem Representation

Much of experts' superior problem solving ability, within their domain of

expertise, appears to be related to their facility to form complex problem

representations. From the formation of the initial problem representation to the

generation of a solution, the expert benefits from a more adequate problem

representation. In the formation of the initial problem representation, the expert

relies on enhanced perception; the mechanism is fast, automatic, unconscious,

www.manaraa.com

11

and relatively accurate (Kaplan, 1978).

During the extended refinement period, experts reject incomplete and

inappropriate hypotheses, and generate both solutions and rationales. Because
experts are able to reject incompletely formed hypotheses, they can consider

more alternatives than novices who work with only one hypothesis. Once an

appropriate hypothesis is considered in detail, the specific solution usually

follows in a straightforward way. Generating rationales in the process, the expert

is prepared for the future when he or she may have to defend the proposed
solution.

The transition with expertise toward more abstractness has an advantage

as well. While the entities in the problem representation are increasingly

incomplete, they are, within a limited set of situations, increasingly general

purpose. So, the expert is able to solve a class of problems, which on the surface
seem to be different, with equal ease.

Environmental Preference: An Informational Theory Appropriate for Computer

Science

The general lack of studies of aesthetics in computer science is paralleled

by the lack of a theory of computer science aesthetics. One area of

psychological theory which is particularly relevant to aesthetics in a computer

science setting involves a theory of preference in the physical environment. The

physical environment and the computer science environment have many

surprising similarities; the information processing demands of software

engineering tasks and the physical environment are remarkably similar.

Consider that in both cases, the setting is large and complex; consequently the

entire setting can not be experienced at one time. Both the computer setting and

the physical environment can, at once, present too much and too little

information. The physical environment and the interfaces appear to be irregular.

But patterns occur in both cases. It is possible to become lost in either case;

finding a "path" in either domain can be considered to be a potentially

www.manaraa.com

12

challenging wayfinding activity.

The notion that an environmentally oriented theory of human information

processing is an appropriate framework from which to study the human-computer

interfaces may seem, at first to be a little farfetched. An interface task has

traditionally been considered to be a verbal task, whereas functioning in an
environment has been considered to require more spatial processing. However,

several authors have indicated that the distinction, based on content, between

these two orientations may not be so clear cut. Huttenlocher (1976) presents an

arguement that much of language use involves spatial processing, particularly in

the evaluation of relations. Also, Luna's (1973) patients with brain lesions in the

region of spatial processing exhibited difficulty in processing sentences with

relationships or complex structure. Nelson and Castano's (1984) more recent

work shows little difference in the processing and use of pictures and words.

A central characteristic of the human-environmental interface is that people

do not experience the environment as neutral. To function in a physical world, a
person must be able to evaluate alternative environments. Environments can

exhibit particular types of patterns which are more or less favorable to information

processing demands. Not surprisingly, people make preference judgements

quickly and without conscious awareness (Zajonc, 1980).

While several models of environmental preference have surfaced in the

context of landscape assessment (Daniel and Vining, 1983), only one has

approached the environment in informational terms (Kaplan and Kaplan, 1982).

In particular, it relates the organization of information to preference. In their

model, preference has two primary indicators:

How engaging the environment is

How easily the environment makes sense.

An environment that is engaging offers an opportunity to learn more about

the setting. An environment that makes sense is recognizable and predictable;

www.manaraa.com

1 3

the pieces in the scene readily "fit together." Making sense and engageement do
not represent the two boundaries of a single continuum. Rather a prefered

environment exhibits both characteristics (Kaplan and Kaplan, 1982).

Evaluation occurs not only in the present context, but also with respect to the

future. Table 2.1 describes how both making sense and engagement deal with
this time dimension.

Within the Kaplan and Kaplan framework, then, a preferred environment is

one that is high in both engagement and making sense. The theory has shown

useful predictive power in a variety of physical environments and environmental

design settings (cf. Kaplan, 1987). It also has a remarkably reasonable appeal.

Consider the sorts of pressures which are applied by the environment. In order to
find one's way, one should prefer a setting where the pieces fit together in a

meaningful pattern. Yet environments are always different. The more that one

can learn about environments, the more prepared one is for future

environments.

The two*factor environmental preference model has been successfully

applied to phenomena outside of environmental psychology. Herzog and Larwin
(unpubl.), for example, have recently found that making sense and engagement

are important variables in preference for captioned cartoons.

Various other studies outside of environmental design have demonstrated

relations between informational characteristics of the stimulus and aesthetics and

preference, although the authors have not interpreted the results using the

Kaplans' framework. In particular, results which relate preference in art (Nicki,
1981; Child, 1981), graphics (Walker, 1981), narratives (Moynihan and Mehrabin,

1981), music (Crozier, 1981), and experimental aesthetics (Hare, 1981) to
informational variables have been reported.

Several authors have suggested that an environmentally-based model of

preference is appropriate for computer science settings. In particular, Weiser

(1979) has speculated that the two-factor, engagement-making sense model is a

reasonable one. In a study of intrinsic motivation, Malone (1981) described

www.manaraa.com

14

MAKING SENSE PRESENT | understand what is happening
in this setting

Given what 1 can see of the
r U T U n fc whole setting,1 know that 1

probably will not become lost

ENGAGEMENT

d d c o c h i t This set,infl has «nough infor-
r H f c o t N I mation to support an internal

model

1 could find interesting
rU T U n fc information in this setting

if 1 explored it further

based on Kaplan and Kaplan (1982)

Table 2.1 - Kaplans' Model of
Environmental Preference

www.manaraa.com

15

variables which contributed to preference in computer games. He suggested that

informational complexity, which is an aspect of engagement, has an effect on
preference.

Molzberger (1983,1984) described interviews with very expert

programmers whom he called "superprogrammers". The results of the interviews

also fit into at least one aspect of the Kaplans' preference framework. In

particular, he found that these software experts stressed the role of harmony and

wholeness in aesthetically pleasing programs. Logic errors were experienced as

disruptions in aesthetic harmony. Since harmony and wholeness typically imply
that pieces fit together, these experts appeared to be describing an aspect of the

making sense dimension of the Kaplans' model.

The two-factor environmental model has an intuitive appeal as a

framework for computer science preference as well. Consider Kernighan and

Plaugeris (1979) Elements of Stvle. The book was an attempt to concretize some

of the stylistic variables that affect programming. While most of the rules have

never been tested empirically, this book remains a standard reference text

among computer scientists. The major premise in the text is that good style leads

to good programming. Nineteen of the sixty-one rules can be considered to be

aesthetic rules. These nineteen rules focus on one central idea: clarity. This
notion of clarity is expressed with terms like "uniformity", "simple", "easy", avoid

"ambiguity", and avoid "confusion". In this respect, one can surmise that

Kernighan and Plauger were attempting to express much the same idea as the

Kaplans' making sense dimension.

Several studies, while not specifically addressing issues of aesthetics

reveal that the components of informational structure, similar to the two-factor

preference matrix, relate to problem solving issues outside of preference. Most

notably in computer science, Soloway and Ehrlich (1984) investigated the

consequences of rules of programming discourse. Violation of these rules,

according to Soloway, Ehrlich, and Black (1983) would horrify an experienced

programmer by being in conflict with their expectations. Soloway and Ehrlich

www.manaraa.com

16

found that expertise level, violation of the rules, and the interaction of the two

issues had a significant effect on program comprehension, as measured by

performance. One can infer that violation of these expected conventions had a

negative effect on degree to which the programs involved made sense.

Similarly, Black and his colleagues have demonstrated that coherence
relations affected the inferences that people make in the process of story

understanding. In particular, sentences which are related causally, by setting,

motivation, common referents, or consistent points of view tend to have higher

levels of coherence and increased comprehension, as demonstrated by memory

tasks. Again, coherence, in his presentation, can be considered to be related to

the making sense dimension of the environmental preference model (Black and
Bern, 1981; Black, Galambos, and Read, 1984, Black, 1984).

It is worth noting at this point, that while the literature in computer science

and related fields seem to fit, at least indirectly, into the Kaplans' framework, there

appears generally to be an imbalance in these reports. The theme of making

sense is clearly figural in this literature. The notion that a variable of engagement

is also relevant has received considerably less emphasis.

Problem Representations and Preference: What is the Connection?

The two theoretical issues of problem representation and preference,

seem to be unrelated. Problem representation is related to a cognitive entity

which becomes increasingly important with increasing expertise. The facility to

develop an adequate problem representation is related to the powerful problem

solving abilities which are developed by experts. Preference on the other hand

refers to an affective type of coding for patterns of information, which are manifest

as environmental scenes, works of art, narratives, musical compositions, or as

computer science tasks. Informational patterns with high preference at once

facilitate structuring and provide enough diversity to sustain the activity.

Surprisingly, patterns which result in high preference also have a high

payoff for the formation of a problem representation. Consider a person in a

www.manaraa.com

17

problem solving setting. The formation of an initial representation is enhanced if

the setting makes sense on the surface since the person can distinguish the

elements of the problem and their interrelations. A problem which is engaging on

the surface holds promise. It suggests future discovery if the person continues to

work on the problem; that is, refinement of the problem representation may be

rewarded in terms of the new information and the interpretation that it yields.

Similarly, a problem which makes sense suggests that the entities of the
problem will fit together as the problem representation is refined. The solver is

not likely to encounter chaos in the problem as the refinement process continues.

If the problem is engaging it presumably will continue to provide opportunities for

learning. This promise encourages the solver to continue to refine the problem
representation toward a solution.

Walker (1981) reviewed empirical evidence relating problem

representations and preference. He suggested that after repeated experience

with a given event, that event will undergo psychological simplification; such

simplification is measurable in terms of reduced numbers of errors and latency of

response. He described several diverse studies of aesthetics in which repeated

exposure to the stimulus or training in the domain leads to altered preference

patterns. Walker attributed these changes in preference to the simplification of

the event which the subject had experienced. One can speculate that the

described simplifications in psychological events were paralleled by changes in

problem representations. Under this interpretation, it is clear that problem

representation and preference are closely connected.

APommon Scenario as Illustration

In the experience of this author, another common event provides vivid

anecdotal illustration of the relationship between preference and problem

representation. A typical job interview for a computer science senior with no

real-world experience consists, in part, of a set of problems. The problems are

similar to the types of problems that the interviewee would solve on the job. The

www.manaraa.com

1 8

interviewer describes the problems and asks the candidate to explain how he or

she would solve the problem. The candidate may ask additional questions; he or

she describes the solution, as well as something about the transformation from
the problem to the solution. In other words, the candidate verbalizes some

pieces of the problem representation and the process of refinement. Presumably,

the candidate's responses determine in part whether a job offer will be made.

On the other hand, after the problem solving exercise, the candidate often

knows whether he or she would really like the job. This revelation is often sudden

and unexpected. Particularly, if the conclusion is negative, the candidate may

have a difficult time pretending to be interested during the remainder of the
interview.

Presumably during the problem solving session, some preference

judgements were made in reference to the described problems and the process
of generating a solution. Because the preference judgements were made

unconsciously, the approval or aversion to the job seems sudden and
uncalculated.

Summary - Problem Representations and Preference

Two theoretical models have been described. An adequate problem

representation and its formation have been suggested as critical elements in the

superior problem solving by experts. The formation of a representation includes

the selection of an initial representation and an extended refinement process.
Information processing in computer science situations is similar to

functioning in the physical environment. One characteristic of environmental

functioning is the generation of preference judgements based on informational

characteristics of a setting. Informational characteristics of computer science

situations may influence preference in a similar way.

Formation of a problem representation and preference appear to be

interrelated processes. Situations which are highly coherent enhance the

formation of representation; situations with promise help to sustain this same

www.manaraa.com

19

process.

In the next chapter, the experimental design for the current study is

discussed. This design incorporates the theoretical issues which were discussed
in this chapter.

www.manaraa.com

2 0

Notes to Chapter II

[1] Interaction of content and preference - The model of preference which
has been postulated revolves around characteristics of informational
organization. Of course, content also affects preference. Unfortunately, content
can not be cleanly separated from informational organization; a prefered content
might also be characterized by prefered styles of informational organization (cf.
Kaplan and Kaplan, 1982).

www.manaraa.com

CHAPTER III

DESCRIPTION OF METHODOLOGY AND TEST INSTRUMENT

The design of an appropriate study has been one of the most challenging

issues faced by any human-computer interface researcher. The task is

particularly difficult for a person who is working in the area of preference since

the body of literature is so small. Because almost no precedents exist, a

researcher in this area is forced to start almost "from scratch."

This chapter describes the methodology, test instrument, and procedure

which were chosen for this study. In particular, the specific aspects of and

rationales for five facets of the experimental design are highlighted and include:

Chosen experimental methodology

Chosen experimental unit

Chosen content of the test instrument

Data collection procedure

Specific description of test instrument

Description of Chosen Methodology

Within the domain of aesthetics in computer science, two methodologies

have been used. Molzberger (1983) conducted interviews with expert

programmers. Soloway and Ehrlich (1984) collected performance measures

from experts and novices. Unfortunately, both of these approaches have serious

drawbacks. The interview methodology is difficult to quantify; the results depend

entirely on the interpretation of the interviewer. The performance measurement

21

www.manaraa.com

22

approach, on the other hand, yields quantitative data. This approach, however, is

a highly indirect measure of preference. (It relies on the assumption that

performance and preference are parallel operations and that the manifestation of

one of the operations is descriptive of the other operation.)

Ratings by subjects have been used successfully in computer science to

measure user-perceived quality and satisfaction with computer systems and

software packages, (cf. Dzida, Herda, Itzfeldt, 1978; Gilfoil 1982; Rushinekand

Rushinek, 1986) This technique has the advantages of being both quantitative

and direct, since the subject provides a numerical rating of his/her reaction to an
item.

In this study, subjects were asked to provide both preference and interest

ratings of the stimulus items. Preference ratings were collected for all of the items
and interest ratings were gathered for a subset of the items.

Selection of the Experimental Unit

The size of software systems ranges from the small to the enormous, with

some production systems exceeding a million lines of programming code. Given

this large range, a second challenge to the experimenter is to select an
experimental unit of an appropriate size.

The short, functional program has been used successfully to study several
issues in computer science expertise. Simple programs contain many of the

basic elements of programming, such as looping, manipulation of variables, input

and output, and testing. This experimental unit preserves many of the features of

complex software tasks; yet the short programs can be written in a familiar

language and format, and held to a manageable size, with meaning for novices,

intermediates, and experts.

The short program is especially useful in studying the role of abstract

information for experts and novices. In particular, because even simple

problems can be correctly solved by many different programs which may have

enormous differences in style, statement type, or amount of noise, these items are

useful in studies that require more than one solution to a single problem.

www.manaraa.com

23

Behaviors associated with these functionally equivalent but syntactically different

programs have been used to illustrate the facility of experts to "see" beyond
syntactic differences, (cf. Kahney, 1983; Soloway, Ehrlich, Bonar, 1982)

Unfortunately, the results of research using small programs may have only

limited generalizability. A robust phenomenon for fifty line programs may have

little relevance for a million line software system. On the other hand, the use of

extremely large software systems as experimental units is potentially both

expensive and difficult to control (Sheil, 1981).

This study uses an intermediate form of stimulus, which lies somewhere

between the small, tightly controlled program and a large software system. The
items for this study consist of problem statements and incomplete program

solutions. The problem statements provide a general context for the solutions,

with only the information for the given solution specified in detail. The general

problems are of sufficient complexity that one could imagine developing software
systems which range in size from small to intermediate.

The partial solutions, on the other hand, provide windows into the solutions
to the overall problems. These windows are clearly managable since the given

solutions consist of between five and twenty-three lines of code. Yet because the

given solutions are partial, the larger solutions are not restricted in size as an
artifact of the experiment.

Selection of Content of the Test Instrument

The selection of the content for the task actually involved selecting the

programming problems and the corresponding solutions. One is challenged to

find problems and solutions which are diverse enough to be representative of a

broad range of computer science tasks but still reasonably small in number to
form a viable experimental task.

Traditionally, much of computer science education emphasizes exposure

to a variety of software and hardware problems, algorithms, and data structures.

Intuitively, one might suspect that important preference differences for computer

scientists are simply related to the type of problem, algorithm, or data structure

www.manaraa.com

24

which they are working with. The following scenario illustrates one way that the

choice of algorithm might be related to preference.

Programmer X has encountered a situation which calls for a sorting
procedure. Given a choice, would she prefer to use a bubble sort or an
insertion sort, all other variables in her decision being equal in either
case.

in order to cover a broad range of problem and solution types, five

programming problem types and ten programming solution types were included

in the test instrument. For four out of the five problem types, the solutions were

functionally equivalent, but not identical. In the fifth problem type, the problems

and solutions were similar.

The problems and solutions for this study were all developed by the

experimenter. However, many of the problems and solutions resemble typical

textbook examples since textbook items presumably are somewhere near the

mainstream of practice.

ChoicajglPcedictQr. Variables
Two kinds of predictor variables were systematically varied in the test

instrument: (a) Surface structure of the solution and (b) Classicalness of the

problem and solution. An additional predictor variable, interest, was obtained

through ratings.

Surface Level Solution Manipulations - Soloway and Ehrlich (1984) found

performance differences between experts and novices on tasks involving

violations of rules of discourse. Specifically, when a rule of discourse was

violated, the performance of the expert was degraded to nearly that of the

novices. Significant differences were found between expert and novice

performance, performance in the violate and no violation condition, and the

www.manaraa.com

25

interaction of expertise and the violation.

The current study included a variation on Soloway and Ehrlich's approach.

Soloway and Ehrlich (1984) found significant effects on five rules of discourse.

Only two of those rules were tested in the current study, including the Double

Duty Rule and the IF-WHiLE rule.

Double Duty Rule - The double duty rule states "Don't do double duty with code

in a non-obvious way.” Many interpretations of this rule are possible, including

a. Any variable which serves two functions is considered to be in violation
of this rule. For example, a variable which functions both as part of a
Boolean condition for loop control and as an array size is in violation of
the rule.

b. A data structure which is used predominantly in one way, but a small
component is used in another. For example, in a table data structure,
the slots of the table are used to hold data. Sometimes the table size is
stored in the first slot in the table.

c. Two variables with nearly identical names, serving in the same
capacity is an example of non-obvious double use of code.

Construct Affordances Rule - Soloway and Ehrlich also considered a rule which

stated, "An IF should be used when a statement body is guaranteed to be

executed only once, and a WHILE used when a statement body may need to be

repeatedly executed." In other words, this rule is violated when an inappropriate
construct is used in the described situation.

Several experts have suggested that the IF-WHILE rule is a special case of
a more general rule that might be called a "construct affordances" rule (private

conversation - see Note 1). That is, a programming construct may "afford" special

features that make it particularly appropriate in some situations. Conversely, a

"violation” of this rule occurs when a construct is used which is inappropriate in

the setting but does not make the program incorrect. Some common Pascal

constructs, their normal usage situations, and alternative, "violation" constructs

www.manaraa.com

26

are described in Table 3.1.

The notion that certain program constructs are appropriate to the setting is

not without precedent in the human-computer interface literature. In their "Bug

Catelogues", Spohrer, et al. (1985) included a large number of "buggy" novice

programs. Several programs were included because the authors felt that the

novices had used an inappropriate construct. For example, Tax Problem Bug #6

was included because it include a subroutine parameter that referred to the

actual program variable. In this case, reference to a copy of that program

variable would have been sufficient for the task since no change was made to the
variable.

Classicalness - The notion of classicalness is widely used in domains such as

music, art, and history. For instance, even a music novice would likely identify

The Kanon in D (Pachelbel) as high in classicalness and "We’re Strong for

Toledo" as low in classicalness. One way to assign some type of scaling to the

problem and solution type variables is to consider how "classical" is the problem
or solution type. Classicalness refers to its role in computer science. A problem

or solution which is seminal in computer science clearly has high classicalness;

one which is known but not a milestone has lower classicalness. In the test

instrument, the problem categories vary in classicalness; two of the solutions use

the classical algorithm, data structures, and program structure; the other two use

an alternative algorithm, data structure, program structure, or some combination.

In an attempt to capture this "classicalness" dimension, each problem and

solution has an assigned a classicalness rating, (see Note 2 for a description of

the classicalness ratings for the test instrument items) The rating scale is:

H (high): found in many introductory programming and data structure texts as
a classical problem or solution.

M (medium): found often in introductory programming or data structure texts
as a typical example but not as a classical problem or solution.

L (low): found in an introductory programming or data structure text as an

www.manaraa.com

27

CONSTRUCT NORMALUSAGE "VIOLATION"

FOR
when number of repititions
is known in advance:
automatically maintains a
loop counter

WHILE requires that
srogrammer explicitly
nafntain loop counter
and test exit condition.

IF Boolean condition, followed
by statement body executes
exactly once

WHILE requires that within
he statement body, the exit
condition changes; infinite

loop otherwise

REPEAT Statement body executes an
unknown number of times,
but at least once.

WHILE requires an
unnecessary test before

the first iteration.

WHILE Generalized loop; appropriate
when number of iterations is
unknown.

REPEAT assumes at least
one iteration of loop

FUNCTION A single calculated value is
returned from a called
subprogram.

PROCEDURE requires the
value to be explicitly
returned as a variable

parameter.

Table 3.1 - Constructs Affordances
and Violations

www.manaraa.com

28

exercise or an unusual solution.

Interest - In addition, a third independent variable involved the question of how

interesting the items appeared to be. Other studies of preference, outside of

computer science, have found that interest seemed to be a useful predictor of
preference (cf. Crazier, 1977; Hare, 1974).

Description of the Data Collection Procedure

Five types of programming problems were included in the test instrument
(matrix rotation, sorting, main procedure, numerical calculation, and searching).

The problems were stated in the context of a larger software engineering

situation. For each problem, a partial Pascal solution was included. The

solutions were syntactically correct.

The test instrument consisted of twenty problem and solution pairs. For
each pair, the subject was instructed to "rate the program segment" on a

five-point scale. The points on the scale included "unsatisfactory", "marginally

acceptable", "adequate", "highly acceptable", and "elegant."

Following the twenty problem and solution pairs, the subjects were asked

to complete eleven demographic questions. These questions were followed by a
repetition of ten of the problem and solution pairs from the first part of the

instrument. For these ten problems and solutions, the subjects were asked to

"rate how interesting you found this problem/solution pair on a scale from 'A' to

’E'," where "A" was labeled as "highly uninteresting" and "E" was labeled as

"extremely interesting". Appendix B contains a facsimile of the test instrument.

The items in the test instrument were counterbalanced. Two different

orders of preference items were used and four different orders of interest items,

making a total of eight different orders of presentation.

The data collection proceeded as follows: The experimenter was

introduced (truthfully) to the subjects a s a faculty member in the computer science

department. The subjects received a short, written description of the current

project (a copy of this description is included in Appendix B). This description

www.manaraa.com

29

was reviewed by the experimenter. Consent forms were distributed and

explained. The subjects who wished to participate signed and dated the forms.

The subjects then received a test booklet which included a directions

page, as well as the preference, demographics, and interest items. The
directions page contained an explanation of the way in which the subjects were

to complete the task, as well as a statement which informed the students that they
would have one hour to complete the task. The experimenter reviewed the

directions page and asked for questions. The subjects then completed the task

and returned both their test booklets and consent forms to the experimenter. At
this time, they left the room.

Description of the Sample

The task was administered to 47 students in a sophomore computer

science class at Bowling Green State University (BGSU) and to 46 students in a
senior level computer science class at BGSU. The task was administered at the

first scheduled meeting of the respective classes. The students were given 1

hour to complete the task, although none of the participants required all of the

allotted time. The students were not paid for their participation; however, they

were given the option to leave without participation in the study. In general, the

novices in the study were the students in the sophomore class and the experts
were the students in the senior class. However, because students occasionally

take these courses out of order, the expertise level of the students was defined by

the number of computer science courses that the student had completed. These

novices were students who had completed 3 or 4 computer science courses (
these courses most likely included Introduction to Programming, Advanced

Programming Techniques, Assembler Language Programming, and possibly
COBOL programming or programming languages). The experts had completed 6

or more computer science courses. Since most of the students in this category

were computer science seniors or graduate students, they had presumably

completed more than 6 computer science courses (see: Note 3 for further

discussion of measurement of expertise in this study. Note 4 for description of

www.manaraa.com

30

pretesting procedures.). Appendix C includes a detailed description of the
sample characteristics.

Description of the Problems and Solutions

Matrix Rotation. Problems - Matrices are widely used in mathematical problems.

The implementation of matrices and their operations are common programming

problems. The operations which are usually associated with matrices are

addition, transpose, inversion, and multiplication.

For the matrix problems that were used in this study, a more unusual

operation was selected. The problem was to write a program that rotates a matrix
ninety-degrees. The rotation of a matrix is a useful operation in problems in

which the matrix represents some kind of physical object which needs to be

turned. Because the matrix rotation is an unusual operation, the problem is

considered to be of low classicalness.

Matrices are implemented in several different ways. Because a matrix is a

two-dimensional structure, the most common implementation is with a
two-dimensional array. Two of the matrix rotate solutions in the test instrument
use this implementation.

The implementation of the matrix with a two-dimensional array is highly

classical. Although the problem in this case has low classicalness, the
implementation of a matrix with a two-dimensional array in general is the usual
approach.

A less common implementation is with a one dimensional array

representing the matrix. In the one-dimensional array approach, the matrix is

stored by rows or columns. That is, all of the elements of row (column) one are in

their normal matrix order, followed by all of the elements of row (column) two, and

so forth. The one-dimensional array implementation of matrices is actually used

in practice in some programming languages, most notably FORTRAN. Two of the

matrix rotate solutions in the test instrument use this implementation.

The implementation of a matrix with a one-dimensional array is unusual;

the solutions of this type are rated as low in classicalness. The complete

www.manaraa.com

31

description of the matrix rotate problem and solutions are shown in Table 3.2.

Sorting Problems - One of the most common problems in software development

is to sort a list; sorting algorithms are typically a focus of a data structures course.

The body of sorting algorithms is large and diverse and ranges from the highly

familiar to the obscure. Not surprisingly, this problem type is considered to have

a high level of classicalness.

The bubble sort is perhaps the most widely known sorting algorithm, and

hence is high in classicalness. In this sort, the program makes two passes over
the list; the smallest (largest) items "bubble" to the top in a list which is sorted in

ascending (descending) order. This sort is found in nearly every introductory
programming text because it is straightforward, although not computationally
efficient.

The insertion sort is included less often in introductory programming

texts, but is covered often enought to be assigned a medium classicalness rating.

In this sort, each item of the list is inserted into its proper position. Like the bubble

sort, the insertion sort is not particularly efficient.

The sorting problems and solutions are described in Table 3.3.

Main Procedures - Within computer science, students are taught to write

structured programs. In a structured program, the main procedure initiates other

parts of the program to solve the problem. Little, if any, of the problem itself is
solved in the main procedure.

To generate a main procedure is a fairly classical computer science
problem in an abstract sense. However, unlike the sorting or matrix problems,

the generic problem statement of "...write a main procedure..." is not meaningful

without the larger context of a specific target problem. In the problems in the test

instrument, the task of writing a main procedure is cast in the setting of larger

software development problems, which were uniquely designed by the

experimenter. Because the generic task of generating a main procedure is highly

classical, but generating the specific main procedures for the test instrument is

less classical, these problems are considered to be at a medium classicalness
level.

www.manaraa.com

3 2

PROBLEM SOLUTIONS

VIOLATES
DOUBLE
DUTY
RULE?

VIOLATES
CONSTRUCT
AFFORDANCE
RULE?

PROBLEM
CLASS.
LEVEL

soLimof'
CLASS.
LEVEL

1. JUNGLE ESCAPE -
board gama. Tha
object-to rotate
tha gameboard 90*.

NO
WHILE
replaces

FOR

LOW LOW

MATRIX

ROTATE

2. SOUTH POLE-
navigation of tha
South Pole where
every direction is
north. Rotate map
of the South Pole.

NO

WHILE
replaces

FOR
LOW HIGH

3. ARRANGE HOUSES
Rotate a grid that
represents a house,
90*.

YES NO LOW LOW

4. QUILTING -
Rotate quilt frame
90* for quilting YES NO LOW HIGH

Table 3 .2 - Matrix Rotate Items

PROBLEM SOLUTIONS VIOLATES
DOUBLE
DUTY
RULE?

VIOLATES
CONSTRUCT
AFFORDANCE
RULE

PROBLEM
C U SS.
LEVEL

SOLUTION
C U SS.
LEVEL

1. CONTRIBUTlONS-sort
charitable contribu
tions in ascending
order

NO NO HIGH HIGH

SORTA

LIST

2. WEIGHTS-sort dog
weights for a dieting
dog

NO NO HIGH MEDIUM

(ascending
order)

3. PRICE LIST-sort list
of prices from a four
family garage sale

NO

WHILE
replaces

IF
HIGH HIGH

4. SEAWATER-sort
magnesium
concentrations in
manufactured seawater

YES
REPEAT

replaces
WHILE

HIGH MEDIUM

Table 3 .3 - Sorting Items

www.manaraa.com

33

Each of the solutions of this type in the experiment is interactive and can

be executed as many times as the user would like. Since only the main

procedure is given, the subjects never see the entire solution to the problems.

The solutions vary in how much of the problem is actually solved in the

main procedure. The modular solutions, which act only as "drivers" for the rest of
the program, are completely consistent with the structured programming

paradigm. These solutions have a high classicalness level. The two solutions

which act as "drivers," but also contain a few lines of code which solve part of the

problem are less frequently presented in textbooks. These types of main

procedures usually appear as examples of poor programming practice. The

main procedures with a few details are medium classicalness solutions.

Table 3.4 details of the Main Procedure problems and their associated
solutions.

Numerical Calculations - Many software systems include some numerical

calculations. These typically can stand alone and are isolated into procedures or
functions.

The problems which are included in the experiment call for a numerical

calculation; the calculation is either a generation of a number or a tabulation of a
sum. Instead of simply stating a numerical problem like "add a series of

numbers", the numerical problem is presented as part of a small story. Like the

main procedure problems, the calculation problems are set in and inseparable
from the larger programming problem in the problem

statement. The problem type is considered to be at a medium classicalness
level.

Many numerical problems can be solved either recursively or iteratively,

although recursion is typically more problematic. Two of the solutions to these
problems are recursive; two are iterative.

The recursive numerical calculations are each assigned a low

classicalness rating since neither of the underlying algorithms are inherently

recursive in nature. By contrast, the iterative subprograms are considered to be
highly classical because the underlying algorithms are inherently iterative.

www.manaraa.com

34

PROBLEM SOLUTIONS VIOLATES
DOUBLE
DUTY
RULE?

VIOLATES
CONSTRUCT
AFFORDANCE
RULE

PROBLEM
CLASS.
LEVEL

SOLUTION
CLASS.
LEVEL

1. LIBRARY SYSTEM-
write a library
system to help
undergrads g en era te
term papers

NO NO MEDIUM MEDIUM

WRITE A

2. SHOE STORE-write
an online o rder facility
for th e Technocrat
On-line S hoe Com pany

NO
WHILE
rep laces
REPEAT

MEDIUM MEDIUM

MAIN

PROCEDURE

3. PET POISON HOTLINE
write an answering
system for a pet
poison information
c learinghouse

NO NO MEDIUM HIGH

4. THUNDER STORM-
write a thunder storm
locator serv ice for
pilots

NO WHILE
rep laces
REPEAT

MEDIUM HIGH

Table 3 .4 - Main Procedure Items

www.manaraa.com

35

The structure of the numerical calculation problems and solutions are
shown in Table 3.5.

Searching Problems - Like sorting problems, searching problems are a common

class of software problems. Many searching algorithms exist; the topic of
searching is central in a course in data structures.

The problems which were used in the test instrument require a search of a

table. This is a highly classical problem. The solutions include two types of

variations; they differ in the searching algorithm and in the underlying data

structure.

The exhaustive search is the most intuitive searching strategy. In an
exhaustive search, each item in the table is considered until the target is found or

the table is exhausted. The exhaustive search requires no maintenance of the

table; however, it is not efficient. Because of its lack of efficiency, the exhaustive
search is not emphasized. The exhaustive search solutions are given lower
classicalness ratings.

The binary search, in contrast, is more efficient but less intuitive. In a

binary search, the whole table is searched, then half the table, then one-quarter

of the table, and so on, until the target is found, or no objects are left. The binary
search requires that the table be maintained in order. Because of its

computational efficiency, the binary search is well-known; it is considered to have
high classicalness.

The table data structure can be implemented in at least two ways. The
entire table is part of the same data structure in an implementation with records;

in this implementation, complex variable names are typically required. If the table

is implemented with multiple parallel arrays, each table item corresponds to an

array. In either case, the programmer is responsible for maintaining the table
during any table update.

Table 3.6 summarizes the details of the searching problems and solutions.

Summary of Methodology. Test Instrument, and Procedure

The collection of preference ratings was selected as an appropriate

www.manaraa.com

36

PROBLEM SOLUTIONS VIOUTES
DOUBLE
DUTY
RULE?

VIOLATES
CONSTRUCT
AFFORDANCE
RULE

PROBLEM
CLASS.
LEVEL

SOLUTION
C U SS.
LEVEL

NUMERICAL

1. TEST GRADING-
tabulate a score on
a n n u m

NO NO MEDIUM HIGH

CALCULATIONS
2. LEGISLATIVE VOTE-

tabulata a legislative
vote YES NO MEDIUM LOW

3. SECRET CODE-
generata a secret
coda

NO
PROCEDURI
replaces
FUNCTION

MEDIUM HIGH

4. LOTTERY NUMBER-
generate a winning
lottery number

YES PHOtEDUftt
replaces
FUNCTION

MEDIUM LOW

Table 3 .5 - Numerical Calculation Items

PROBLEM SOLUTIONS VIOLATES
DOUBLE
DUTY
RULE?

VIOLATES
CONSTRUCT
AFFOROANCE
RULE

PROBLEM
CUSS.
LEVEL

SOLUTION
C U S S .
LEVEL

1. JEWELRY STORE-
update parts
catalogue for a
jewelry store
inventory

YES NO HIGH LOW

2. ARCHEOLOGY-
maintain an inventory
of an archeological
dig

YES REPEAT
replaces
WHILE

HIGH HIGH

3. TOXIC SUB.S-
maintain an employee
inventory for
contact with toxic
substances

YES WHILE
replaces
IF

HIGH LOW

4. RARE WILD FLORA-
maintain an inventory
of endangered plants

YES NO HIGH HIGH

Table 3.6 • Searching Items

www.manaraa.com

37

methodology since it produces direct quantitative measurements of the

preference phenomenon. The test instrument for the experiment includes several
a priori predictor variables and samples preference, interest, and a variety of
demographic variables.

www.manaraa.com

38

Motes-to. Chapter III

[1] The notion of construct affordances was suggested by Frank Cioch.
Some examples were suggested in private conversations with R. Belew, A.
Gilles, K. Ross, and M. Weaver.

[2] The classicalness levels for the items in the test instrument were
originally assigned by the experimenter. Private conversations with R. Belew, A.
Gilles, K. Ross, and M. Weaver provided support for the assignments

[3] Other studies of computer science expertise have used freshmen in
their first computer science course as novice subjects. The topics and difficulty
level of the items in the test instrument precluded the use of introductory students.

[4] The test instrument was pretested with three novices and two experts.
The subjects in the pretest were paid $3.50; they required between 30 and 60
minutes to complete the task. While the subjects in the pretest found the task
generally interesting, they found several syntax errors in the test instrument.
These errors were subsequently corrected.

www.manaraa.com

CHAPTER IV

PREDICTION OF AESTHETICS IN EXPERTS AND NOVICES

The results of this study are presented in this chapter and the next two
which follow. The current chapter highlights the roles of the independent

variables (interest, discourse rule violation status, problem and solution
classicalness) in predicting the preferences of the experts and novices. The two

chapters which follow emphasize the patterns of preferences of and their

relations to the perceptions of the two subject groups.

Analyses
Across all 20 of the items in the test instrument, experts had higher

preference ratings than the novices (means of 3.27 and 3.14, respectively).

This difference is significant (t=3.20 and p<.005). At the same time, however the

mean ratings for the two groups were highly correlated (r=.82). This high

correlation indicates that the two groups found the same problems highly

preferable or less preferable. One is tempted to conclude that a higher expertise

level leads one to greater appreciation (as reflected by higher preference) of the
items, but that the general pattern of preference is similar between the two

groups.

With respect to interest ratings, a different picture emerges. Although

the interest ratings are virtually identical across the two groups (average rating
around 2.9 suggests that neither group found the items highly interesting), the

correlation between the two sets of ratings is -.04. In other words, what

constitutes interestingness is completely different between the two groups.

These results make it clear that the roles of the interest and the other

39

www.manaraa.com

40

independent variables (problem and solution classicalness, discourse rule

violation status) must be examined separately for the novices and experts. The
type of analysis which was used to predict the preference ratings was analysis of

covariance. These analyses, performed for novices and experts, used mean

preference ratings for each item as the dependent variable. Mean interest ratings

for each item were also computed separately for each group. The other three

independent variables (problem and solution classicainess and discourse rule

violation status) were the same in each analysis, since they involved
characteristics of the items rather than of the subjects.

In the analysis of covariance models, interest, as an interval variable was

the covariate. The other three independent variables were used as categorical

variables. Discourse rule violation status was coded as 0 if the item had no
violations, and as 1 if the item had one or more violations. Solution classicalness

was assigned a value of 0 if the item was at a low level of classicalness, and had

a value of 1 if the item was at a medium or high level of classicalness. The value

of problem classicalness was 0 if the level was low or medium, and was 1 if the

level is high. (See Note 1 for a more detailed description of the analyses which

were performed. Appendix E contains a facsimile of the data which was used in
the analysis.)

Before presenting the results from the analyses, it is useful to consider a

general framework which organizes the four independent variables.

Classicalness, in this study, was divided into both problem and solution aspects.

This division is also a useful way to consider the other two independent

variables. The discourse rule violation status is oriented to solution issues.

Interest, however, is more closely related to the problem than to the solution.

Thus, as Figure 4.1 illustrates, the four variables can be considered as cells in a 2
x 2 matrix. The matrix includes both the solution vs. problem dimension and the

classicalness vs. the other more surface level issues.

Interest was included as an aspect of problem on the basis of a principal

components factor analysis of the four independent variables, performed

separately for the experts and novices. For both groups, two orthogonal factors

www.manaraa.com

41

problem interest

problem classicalness

solution
solution

classicalness

discourse

rule viol,

status

deep surface
structure structure
features features

Figure 4.1 - Prediction Framework
for independent variables

www.manaraa.com

42

emerged, using a minimum loading criterion of .40. Solution classicalness and

discourse rule status had high loadings on Factor 1 (.84 and -.82, respectively for
the novices and -.82 and .84 respectively for the experts). Interest and problem

classicalness were strongly loaded on Factor 2 (.81 aand -.70 respectively for the
novices and -.74 and .77 respectively for the experts). Appendix D contains

correlation matrices, loadings from rotated factor matrices, and plots of loadings
vs. variables for both groups.

B esuils
The amount of variance accounted for by the model for each subject

group was roughly comparable; R-squared = .64 and .68 for experts and

novices, respectively. For both groups, the overall F ratio for the model was

significant (F (4,15) = 6.70 p < .003 for the experts. F (4,15) = 7.95 p < .002 for the

novices.) (Appendix F contains the details of the analysis.)

Using the prediction framework which was presented in Figure 4.1, Figure
4.2 shows the partial correlations between each independent variable and

preference for the two subject groups. As these correlations suggest, interest and
solution classicalness are strong positive predictors in both cases, although

solution classicalness seem s to have become slightly less important for the more '

expert subjects. The roles of the other two independent variables differ in the two

cases. Discourse rule violations are important points of focus for novices, but
become less important with increasing experience. By contrast, problem

classicalness, becomes increasingly more salient with greater experience.

In the context of the prediction framework, increased expertise is marked

by movements in emphasis. As expertise increases, the trend in focus tends to
be more on problem characteristics than on solution attributes. Additionally, as

expertise increases, focus moves away from surface level features, in the

direction of deep structure characteristics. This result is consistent with other

non-preference studies of expertise in computer science. Such studies have
repeatedly shown that increasing expertise is accompanied by processing of

www.manaraa.com

4 3

Problem
Features

Solution
Features

ProbCIa Int

-.3 9 .53
(ns)

Sol'nCIa DisRule

.58

CO1
Deep Level Surface

Level

NOVICES

Figure

ProbCIa Int

-.5 5 .55

Sol’nCIa DisRule

.56 -.31
(ns)

Deep Level Surface
Level

EXPERTS

4.2 - Partial correlations
for Experts and Novices
using prediction
framework from Figure
4.1

www.manaraa.com

44

increasingly abstract information.

Preference and Problem Representations

In Chapter II, it was suggested that experts and novices differ strongly in

their patterns of formation and use of problem representations. In this section, the

differences in the roles of the independent variables for the two groups is
discussed in the context of problem representations.

Expert Problem Representations

In Chapter II it was posited that experts invest much of their problem

solving activity on the formation of an adequate problem representation. This

process appears to involve two steps. First is the formation of an initial

representation, using well-developed perceptual skills. This is followed by a

refinement of the representation. Again, the expert relies on perceptual skills; the

expert continues to depend on useful environmental patterns while refining the
representation. Numerous studies have indicated that the generation of a

solution by an expert follows straightforwardly from the formation of the

representation.

The preference ratings of the experts in the current study were based in

large part on problem characteristics. These results seem to be predictable and

follow directly from the proposed theoretical model from Chapter II. Previous

studies have suggested that experts focus on formation of problem

representation during problem solving. The current results suggest that experts

focus primarily on the problem, even when they are already presented with a

solution. Presumably the expert forms a problem representation on the basis of

problem elements. While solution characteristics apparently enter into the

problem representation to a lesser degree, they do not seem to be central

features of the representation. The solution information that is included is

abstract. In this study, solution classsicalness, which was an abstract feature of

the items, was important to the experts. The surface level solution features were

apparently treated as noise and ignored.

www.manaraa.com

45

These results suggest that experts do make preference judgements while

they are forming their problem representations. In this respect, preference
judgements resemble the other problem solving activites of experts which are

similarly involved in problem representations.

Novice Problsm..B.epigsenlatiQ.ns
Unlike experts, novices do not focus on the formation of a rich problem

representation. Instead they appear to focus more on the solution. The solutions

of novices, as a consequence, without a rich representation as an antecedent,

tend to be more limited.

The results of the current study support this notion. Apparently novices

not only begin to solve a problem by concentrating on the solution, but they also

make preference judgements based on solution characteristics.

Expert and Novice Problem Representations

In this study, experts and novices focused on different elements of the
stimuli. For the experts, problem characteristics played a central role in

preference judgements; for novices, solution features were more pivotal.
Furthermore the expert preference judgements seem to have been strongly

influenced by deep features in the items, as indicated by the importance of

problem and solution classicalness as predictor variables. By contrast, the

preference ratings of the novices appear to have been strongly influenced by

surface level features of the items (specifically, interest and discourse rule

violation status). These results appear to be related to differences in problem
representations as a function of expertise.

Summaiy
Two analyses of covariance of expert and novice preference ratings were

performed. Preference for the experts was based primarily on problem

characteristics; experts also seem to focus on abstract elements in the stimulus.

For the novices, solution features were critical predictors of preference. Novices

www.manaraa.com

46

tend to focus on surface level features of the stimulus as well. One interpretation

of these results is that the problem representations of experts are of a different
nature than those of novices in terms of both sophistication and type of
components.

www.manaraa.com

47

Notes to Chapter IV
[1] Analysis of Covariance - One kind of analysis which is appropriate for a

study which includes both nominal and interval data is called an analysis of
covariance. Such an analysis incorporates features of both analysis of variance
(appropriate for nominal data) and regression analysis (appropriate for interval
data). In an experiment in which the independent variables involve both types of
data, as the current study did, this analysis technique permits all of the
independent variables to be considered together, (cf. Blalock, 1979; Wildt and
Ahtola, 1977).

The current analyses were performed using a general linear model
procedure in the commercial statistical package, SAS. Variables of discourse
rule violation status, solution classicalness, and problem classicalness were
encoded as dummy variables.

www.manaraa.com

CHAPTER V

PERCEPTUAL CATEGORIES: EXPERTS

The preceeding chapter described differences between experts and
novices based on the magnitudes of their preference ratings. In particular,

analyses for each group of subjects revealed that problem features and solution

features strongly influenced the ratings of the experts and novices, respectively.

These results suggested that the problem representations for the two groups
were different. In this chapter and the next, the focus is not on amounts of

preference, but rather on patterns of preference for the two groups.

What can be gained from understanding about patterns of preference?

The answer to this question has two parts:

1. Peoples' preferences are an expression in some sense of the way in
which they perceive. As the discussion in Chapter II indicated,
perception seems to change with increasing expertise. By considering
the collected preference ratings in the context of perception, it is possible
to better understand the role of expertise in this study. That the problem
representations of experts and novices differ is an indication that their
perceptions, which are essential for the development of problem
representations, are likely to differ as well.

2. A vital aspect of perception is that entities which are perceived are
perceived as members of categories. Clearly perception would not be
effective if each encountered object was experienced as a
"one-of-a-kind." The mechanisms of perception take advantage of
various similarities in inputs, so that items are experienced as being one
of a group.

Considering patterns of preferences of experts and novices allows one to begin

to understand the nature of the underlying perceptual categories of the two

groups.

48

www.manaraa.com

49

There are statistical procedures which extract patterns from a group of

responses. The particular procedure which was used in this chapter and the next
is called the Guttman-Lingoes Smallest Space Analysis (SSA-III). Using SSA-III,

the preference ratings of the 20 problem and solution pairs were grouped, items
were considered to be elements of a factor if thgy had a loading greater than plus

or minus .38. Items which were loaded onto more than one factor were not
included in either factor. (See Note 1 for a discussion of factor analysis in general

and SSA-III in particular.)

As the results in Chapter IV indicated, different aspects of the test

instrument items influenced the responses of experts and novices, in particular,

experts focused on the problem characteristics and novices highlighted the

solution characteristics. (Variables of interest, problem classicalness, and
solution classicalness influenced expert preference and variables of interest,

solution classicalness, and discourse rule violation status influenced novice

preference.) In this chapter, the factors which describe patterns of expert
preference will, not surprisingly, be interpreted primarily in terms of problem

characteristics. In the next chapter, patterns of novice preference will be
interpreted principally in terms of solution characteristics.

Expert Factor Structure

Using the expert preference ratings, the SSA procedure yielded four

factors. Fourteen of the 20 items were included in the factors. The four

categories were: the UNIQUE PROBLEM Category, the NOVEL USE OF A
COMMON CONSTRUCT Category, the OFF OF THE SHELF Category, and the

INTRODUCTORY PROGRAMMING Category. Table 5.1 provides the names of

the items within each category, their loadings, and information on their levels of

the variables of interest, problem classicalness, solution classicalness, and

discourse rule violation status. The next four sections describe each of the

categories in detail. Appendix G contains the details of the factor analysis.

www.manaraa.com

50

FACTORS LOADINGS PROBLEM SOLUTION MEAN DISC.

CLASS. CLASS. INTEREST RULE

1. UNIQUE 33% high 100% not low 3.15 66% violation

Pat Poison -.7587 not high not low 3.00 no viol.

Thunder
Storm

-.4922 not high not low 3.24 violation

Archeology .7206 high not low 3.22 violation

2. NOVEL USE 0% high 75% not low 3.00 75%violation

Quilting .5581 not high not low 2.81 violation

Test Grade. .4224 not high not low 2.79 no viol.

Jungle Esc. .7351 not high low 3.25
violation

South Pole .3884 not high not low 3.15
violation

3. OFF SHELF 100% high 66% not low 2.79 66%violation

Price List -.6326 high not low 2.48 violation

Toxic Sub.s -.4167 high low 3.14 violation

Contribu.s -.7953 high not low 2.76 no viol.

4. INTRO.PROG 50% high 50% not low 2.82 50%violation

Lottery No. -.4311 not high low 3.00 violation

Weights -.3998 high not low 2.64 no viol.

Table 5.1

EXPERT FACTOR CHARACTERISTICS

www.manaraa.com

51

.UNiaU.ECatfi.qQry
The UNIQUE category contains 3 problems which have not been solved

before. That is, neither the problem statements norths solutions are likely to be

commonly found in textbooks or software catalogues. Two of the three problems

statements request interactive software systems with real world applications; the

problems are to develop a thunder storm locator system for pilots and a pet

poison hotline management system. The third problem is also set in a real world

setting; it is to design a software system for an archeologist who is conducting a
local dig.

In each of these problems, the task problem asks for a specific, small part

of the entire software system. For the interactive programs, a main procedure is

needed; for the archeology problem, a search routine is required. The problem
and solution classicalness levels for the three items are medium or high, and the

interest levels are moderate or high.

It is important to notice that the factor loadings for the items in this category,

shown in Table 5.1, are both positive and negative. The signs for the main

procedure problems loadings are negative. The sign for the archeology problem

loading is positive and in the opposite direction from the loadings of the other two
items. This means that the archeology problem anchors one end of a dimension,

while the other two problems are at the opposite pole. Since all three items
involve the larger context of a real-world problem that has not been solved

before, rather than the specific small task problem and its characteristics, the
common theme seem s to be related to uniqueness.

NOVEL USE OF A COMMON CONSTRUCT Category

The four problems in this category call for an unusual use of a familiar
construct. In three of the problems, the construct is a matrix and the problem is to

rotate the matrix 90°. This rotation is uncommon since it has few applications

outside of the manipulation of spatial objects. The fourth problem involves the

calculation of grades in a subprocedure. One can guess that to students, the
calculation of grades is always an unusual process, in any form.

www.manaraa.com

52

The items in the category have medium or low problem classicalness and

moderate or high interest levels. The levels of solution classicalness vary from
low to high. However, the unifying feature of this group of items seems to be that

a novel problem is solved in a conventional way.

QfEfliLIHE^LFJSatgaott
Many problems in computer science arise so frequently that solutions are

readily available in both textbooks and from software distributors. A programmer

who encounters such a problem typically purchases a completed solution or

codes the solution directly out of a textbook. Searches and sorts are problems of

this type.
The problems in this category include two sorting problems and one

search problem. The problems have high classicalness levels and low interest

levels. The solution classicalness levels range from low to high. However, the

items in this category seem to be united by the prominence of the searching or

sorting problem. This appears to be true, in spite of the fact that the problem
statement includes a larger context for the problems. None of the included

solutions are computationally efficient, but they all involve algorithms which are
intuitive and widely-known.

JNTBODUCTORV PROGRAMMING PROBLEMS Category

In spite of the efforts of authors of introductory programming textbooks and

programming instructors to be original and creative, there has emerged within

computer science a style of introductory programming problems. These are the

problems which are used as classroom examples or programming assignments.

Their sole purpose is pedagogic; their solutions are never intended for use.

These problems typically are in the context of a story or a larger problem

but their sole purpose is to illustrate a programming concept. Consider the
following example of such a problem.

Given a list of English course ID's and class sizes, find the smallest class size, largest class

www.manaraa.com

53

size and average class size. (Dale and Orshalick,1983)

The purpose of this problem is for students to practice data manipulations and

arithmetic computations, rather than to develop software which might potentially

be used.

The fourth expert category contains one subprogram problem and one

sorting problem. The subprogram problem is a generator for a lottery number

and the sorting problem is a sorter for daily dog weights. The problem

classicalness levels are medium and high. Interest appears to be generally low
and solution classicalness levels are low and medium.

One common theme in these problems appears to be their similarity to

introductory programming problems. Although each of the problems is presented
as part of a larger programming problem, the problems are contrived and

unrealistic.

Relation of Categories to Preference

The means for preference are compared between categories in Table 5.2.
As Table 5.2 illustrates, the UNIQUE category has the highest mean preference

score, followed by the NOVEL USE OF A COMMON CONSTUCT category, the

OFF OF THE SHELF category, and the INTRODUCTORY PROGRAMMING

category. The differences among the category means are highly significant (F

(3,162) = 5.14, p < .002).

Expert Categories and Environmental Preference Framework

In Chapter II, a framework for environmental preference was presented. In

this framework, preference is accounted for by two components: engagement
and making sense. Each of these components is meaningful in both an

immediate and a future context. In this section, the results of this study for the

expert subject group are compared to the environmental preference framework.

www.manaraa.com

54

CATEGORY # OF ITEMS PREFERENCE
UNIQUE 3 3.49
MOVELUSE 4 3.44
OFF SHELF 3 325
INTRO. PROG. 2 3.03

Table 5.2

Mean Preference Levels for
Expert Categories

www.manaraa.com

55

Engagement and Making Sense for Computer Science Experts

The categories of the expert factor structure conceptually are

distinguishable along at least three dimensions: the scope and "real worldness"

of the problem, the novelty of the problem, and the novelty of the tools which will

be needed to solve the problem. The items in the UNIQUE category are real

world problems with a large scope; both the problems and the required tools are
new, since the problems are unique. The items in the NOVEL USE OF A

COMMON CONSTRUCT and the OFF OF THE SHELF categories are still real
world problems, but with a greatly reduced scope. In the NOVEL USE OF A

COMMON CONSTRUCT category, the problems are new but the tools are
familiar. In the OFF OF THE SHELF category, both the problems and the tools

are familiar. The items in the INTRODUCTORY PROGRAMMING category are

neither real-world nor large in scope. The problems are familiar and require the
use of familiar tools, (see Note 2)

The level of preference judgements parallels the levels of these issues of

scope, novelty, and real-worldness. For real-world problems which are new and
of large scope, the preference ratings are high. As the scope, real-worldness,

and novelty decrease, the preference ratings also drop. Similarly groups of items
which are new and of large scope (UNIQUE PROBLEM category) had higher

mean preference than those which contained items of more limited scope (OFF

OF THE SHELF category). One can infer that the experts in this study preferred

problems which they recognized as having actual use and which challenged
them to explore new alternatives. Moreover, problems which resembled each

other in terms of these characteristics were perceived as being similar.

These issues, scope, novelty of problem, and novelty of tools, seemed to

be reflected in the variables which effectively predicted expert preference. The
items which appear to be novel and have extensive scope (members of the

UNIQUE PROBLEM category) also have moderately high interest levels and
lower levels of problem classicalness. Similarly items which employ novel tools

(elements in the NOVEL USE OF A COMMON CONSTRUCT categories) have

higher interest levels and lower problem classicalness. The items which have

www.manaraa.com

56

limited scope and novelty (members of OFF OF THE SHELF and

INTRODUCTORY PROGRAMMING categories) have lower interest ratings and
tend to include highly classical problems.

By reconsidering the framework for environmental preference which was

presented in Chapter II, one is struck by the similarity between the issues of

scope and novelty from this study and engagement in that framework. Within that

framework, an engaging environmental setting is one which offers opportunities

to learn. Within the computer science setting, sampled in this study, problems

which are novel and of broad scope would seem to similarly offer possibilities.

The three categories of UNIQUE PROBLEM, NOVEL USE OF A COMMON

CONSTRUCT, and OFF OF THE SHELF, also seem distinguishable from the final

category of INTRODUCTORY PROGRAMMING PROBLEMS in another sense.
The two items in this latter group, unlike the items in any of the other categories,

include solutions which are inappropriate for the problem. For example, in the
Lottery Number item, the problem was to generate a numerical value (the

medium problem classicalness value is an indication that this is about an

average, "run-of-the-mill" computer science problem). The solution however,

given the averageness of the problem, is unexpectedly obscure, since it includes
unnecessary and inappropriate recursion. In the same sense, the other element

of this category contains an inappropriately obscure solution, given the familiarity

of the problem. The solutions to the problems in the other categories seem to fit

the problems more appropriately. (Even though several of the categories include

items with unusual solutions, these are solutions to unusual problems).

From the previous chapter, it is clear that for the expert subject group

solutions of low classicalness tend to have lower preference. That the categories

are not distinguishable in terms of solution classicalness levels alone suggest

that low solution classicalness is not the issue. Rather for this group of subjects,

the fit between solution and problem emerges as important. Items with

inappropriate solutions for the stated problems seem to be perceived as similar.

The environmental preference framework which was described in Chapter II also

includes a component of fit, called in that terminology "making sense." It seems

www.manaraa.com

57

reasonable that the fit issue which, in part, distinguishes the INTRODUCTORY

PROGRAMMING PROBLEMS category from the other categories is one
manifestation of making sense in the computer science arena.

It is useful to notice that in addition to similarities between patterns of

environmental preference and the patterns of preference in this study the

direction of preferences are similar. Higher levels of making sense and

engagement leads to higher levels of preference in both cases.

Preference in a Present and Future Sense

In the environmental preference framework both making sense and

engagement have distinct manifestations for both present and future. The

indicators for the present describe surface level characteristics of scenes, and for
the future describe deep level features. Is that pattern repeated in the responses

of the expert subjects in this study?

To answer this question, it is useful to reconsider the role and process of

formation of problem representation for experts. Recall that experts concentrate
much of their problem solving activity on the formation and refinement of an

effective problem representation. Initially this process involves the extraction of

salient environmental stimuli. This is followed by repeated references to the

stimuli as the representation is refined. Of course both processes are highly

dependent on perception (which in this study was captured to some extent by
preference ratings). During the formation of the initial representation, perception
of surface level features occurs. As the representation is refined, embedded

information is extracted from the environment.

In this study, the variables which affected expert problem representations

differ in their apparent embeddedness into the items, (see Figure 4.1) Because

the experts in this study were generally computer science seniors and the items

were at a difficulty level appropriate for computer science sophomores, one can

guess that the experts in this study were able to form initial problem

representations. According to the analysis in Chapter IV, the one measured

variable which seemed to be involved in the initial representation of the experts

www.manaraa.com

58

was the variable of interest. Interest is a surface level variable because it seems

to reflect how well the items "caught the eye" of the subjects. Because interest
also seem s to be tied to the degree of engagement for an item, a reasonable

inference is that interest in this study was a surface level component of
engagement.

No variable measured in this study seemed to distinguish the items on the

basis of fit in an immediate sense for the expert subject group. However,

because of the difficulty level of the items for this subject group and the apparent

ability of the subjects to form initial representations, it seem s reasonable to

suppose that all of the items made sense in a surface level context.

The two classicalness variables initially were presented as being

embedded features of the items. As the discussion in this chapter suggests, for

the experts, the key features of items at an embedded level are problem scope

and novelty (indicated by problem classicalness) and solution appropriateness
(as indicated by the match between solution classicalness and problem

classicalness). A possible scenario is that the expert, while forming and refining

an adequate problem representation overtime, evaluated both the scope of the

problem and the appropriateness of the solution for the problem. In order to

make these types of evaluations, the expert would have to go "deep" into the

presented item. In other words, it seems unlikely that the experts determined the
appropriateness of a solution or problem scope immediately upon seeing the

problem and solution pair.

In the previous section, it was suggested that problem scope and novelty,

and solution appropriateness are facets of engagement and making sense,

respectively. In addition, the items seem to reflect deep level features of these
components.

All of the features of the environmental preference model, then, may have

appeared in this study for the expert subject group. The matrix in Figure 5.1

describes a proposed model of making sense and engagement, in both a surface

and deep level for the items and the experts in this study. Although the

components of environmental preference adopted characteristic computer

www.manaraa.com

59

Deep

Surface

Solution
appropriateness

Scope; Newness
of tools;
Novelty

All items
made sense in
surface sense in
current study

Interest

Making Sense Engagement

Figure 5.1

Preference Framework for Experts

www.manaraa.com

60

science forms, each factor seems to have been represented. Each aspect

apparently played a different role in and had a special impact on expert
preference.

Summaiy
The preference ratings which were collected in this study can be thought of

as indicators of perception. In this chapter, those ratings were grouped together

statistically for the expert subject group. The resulting four

categories may be indicative of the groupings which these subjects utilize in
perception.

The four categories which emerged from this analysis were distinguishable
in at least two major ways. On the one hand, they differed in the scope and
novelty of the problems and tools which were presented in the items which were

members of the categories. Secondly, the appropriateness of a solution for a
presented problem seemed to distinguish the categories.

These issues of scope and novelty, and appropriateness bear some

resemblence to salient issues in environmental preference. Because of this

similarity in issues, it was possible to develop a model of expert computer

science preference, based on the environmental preference framework. The

exercise of developing the computer science framework suggested further ways

in which expert problem representations were involved in the collected
responses.

www.manaraa.com

61

Notes .to Chapter..V
[1] Factor analysis refers to a family of statistical techniques which are

widely used in behavioral research to extract underlying categories or
dimensions out of a large data set. In general, factor analysis consists of three
steps: generation of an interrelation matrix, extraction of initial factors, and
rotation to a final factor structure. In the first step, the interrelationships among
variables or individuals, expressed typically as correlations or covariances, are
generated pairwise. From the resuiting matrix of interrelationships, a set of initial
factors is extracted. The initial factors may incorporate a priori assumptions
about underlying regularities. Each initial factor describes a linear combination
of the original variables or individuals. The initial factors are then rotated to a
final solution. The final solution forms an n-dimensional structure. Each
dimension typically contains one or more of the original variables or individuals.
Category membership is determined by the "loadings" of individual items on the
factors. The final rotation highlights high factor loadings. The original variables
or individuals which are grouped in the same dimension have thus been shown
to have some underlying common theme (Harman, 1976; Child, 1973).

The Guttman-Lingoes Smallest Space Analysis (SSA-III) factor analysis
with a varimax rotation was performed using the data in this study. SSA-III is a
non-metric factor analysis; the algorithm is non-metric in the sense that the
correlation matrix is transformed into a rank-order matrix (Lingoes,1972).

In other studies of preference outside of computer science, this particular
factor analysis technique has been used successfully to extract categories. Its
proponents have contended that the resulting solutions tend to be more stable
than those from other factor analysis techniques (cf. Kaplan,1975).

[2] Personal communication on August 1,1986 with Mark Weaver, Rik
Belew, John Vidolich, Kevin Ross, and Steve Kaplan, Ann Arbor, Ml.

www.manaraa.com

CHAPTER VI

PERCEPTUAL CATEGORIES: NOVICES

The previous chapter suggested that the experts in this study seemed to

perceive items as similar (as members of categories), based on the scope and

novelty of the problem, as well as the appropriateness of the solutions. In this
chapter, the perceptions of novices, through their preferences, are examined. In

particular, the patterns of these perceptions will be highlighted. Once again, the

analysis is based on a SSA-III factor analysis, using the same criteria as in the

previous chapter.

Recall that the results in Chapter IV indicated that different aspects of the

test instrument items influenced the preference responses of experts and
novices. In particular, experts tended to be more appreciative of problem

characteristics and novices seemed to highlight the solution characteristics.
(Variables of interest, solution classicalness, and discourse rule violation status

influenced novice preference.) In this chapter, the factors which describe

patterns of novice preference will be interpreted in large part in terms of solution

characteristics.

Novice Eactor Structure
Based on an SSA-III analysis of the novice preference ratings, five factors

described the task items. Eighteen of the 20 items were included in the structure.

The five categories were: the MODELS OF BUBBLE SORTS Category, the

MODELS OF MAIN PROCEDURES Category, the GAMELIKE Category, the

INTRODUCTORY PROGRAMMING Category, and the DIFFICULT Category.

Table 6.1 provides the names of the items within each category, their loadings,

62

www.manaraa.com

63

FACTORS LOADINGS soLirnoh
CLASS.

PROB.

CLASS.

DISCOURSE

RULE STATUS

MEAN

INTEREST

1. BUBBLESORT 100% not low 100%high 50% violations 3.01

Price List -.6671 not low high 1 or more 3.13

Contrib. -.9590 not low high 0 2.89

2. MAIN PROCS. 100% not low 0%high 50% violations 2.82

ThunderSt. .7176 not low not high 1 or more 3.04

Pet Poison .7427 not low not high 0 2.60

3. GAMELIKE 57% not low 42%high 71% violations 3.00

Grades -.4637 not low not high 6 3.35

Jungle Esc. -.5445 low not high 1 or more 2.89

Dog Weights -.5426 not low high 0 2.85

Rare Flora -.5146 not low high 1 or more 2.55

Shoes -.3959 not low nothigh 1 or more 2.81

Toxic Sub.s -.3884 low high 1 or more 3.32

Prefab H. -.5230 low nothigh 1 or more 3.08

4. INTRO.PROG 57% not low 33% high 100% violation! 2.94

JewelryStore -.6175 low high 1 or more 2.96

South P. -.7741 not low not high 1 or more 2.85

Secret Code -.3795 not low nothigh 1 or more 3.00

5. DIFFICULT 50% not low 50%high 100% violation: 2.77

Legis. Vote -.4842 low not high 1 or more 2.58

Seawater -.6090 not low high 1 or more 2.54

Lottery -.6362 low not high 1 or more 3.09

Archeology -.4628 not low high 1 or more 2.87

Table 6.1

NOVICE FACTOR CHARACTERISTICS

www.manaraa.com

64

and information on their levels of the variables of interest, classicalness, and

discourse rule violation status. The next five sections describe each of the

categories in detail. Appendix G contains the details of the factor analysis.

MODELS OF BUBBLE SORTS and MODELS OF MAIN PROCEDURES

Categories
Two of the categories which emerged contained solutions which were

similar to textbook models of algorithms. In particular, one category contained

two bubble sorting algorithms, and the other category included modular main

procedures. In each case, one item had discourse rule violations and one did

not. In both groups, all of the items are of medium or high solution classicalness.

The mean interest value for the items in the MODELS OF BUBBLE SORTS

category is relatively high. The interest level for the items in the MODELS OF

MAIN PROCEDURES category is moderate to low.

Several novices commented, after completing the experiment, that they

noticed the solutions which were "just like they would do it." The bubble sorts in

the MODELS OF BUBBLE SORTS category apparently seem to reflect the way

that this group of subjects felt that they would implement a bubble sort. Not

surprisingly, this would be the way that they have learned to implement this sort

in their coursework. Similarly, the two main procedures which were included in

the MODELS OF MAIN PROCEDURES categories would appear to reflect the

way that the novices would expect to implement a main procedure.

GAMELIKE Category

This category includes seven items: two one-dimensional matrix rotates

and one each of iterative procedure, insertion sort; binary table search with

parallel arrays, detailed main procedure, exhaustive table search with parallel

arrays. Slighty more than half of the items have high or medium solution

classicalness levels. Five of the seven items in the group include one or more

discourse rule violations. The mean interest score for the items in the group is
relatively high.

www.manaraa.com

65

The common feature among these solutions seems to be a gamelike

quality. It is likely that the novices in this study would have had little previous
exposure to these solutions. Yet the solutions should have been understandable

to the subjects in the group. The items in this group presumably are challenging

to the group because of their novelty, but still coherent because of the subjects'

general familiarity with the constituent parts and their organization. The common

feature of the components in this category, then, seems to be that they are

relatively unfamiliar but easy to understand; that is, they are like games.

INTRODUCTORY PROGRAMMING Category

The three items in this group include a two-dimensional matrix rotation, an

exhaustive table search with records, and an iterative procedure. The larger
context for the solutions are Antarctic navigation, jewelry store inventory

maintenance, and generation of a secret code, respectively. The interest level for

items in this group are moderate. Two out of the three items have medium or

high solution classicalness, but all of the items have at least one discourse rule

violation.

Like the items in the expert's INTRODUCTORY PROGRAMMING category,

these items are similar to typical introductory programming items. The solutions

resemble pedagogic items which are developed for the sole purpose of

illustrating programming concepts. The discourse rule violations are examples of

such concepts. The uniftying theme would appear to be that this group contains

items with contrived and pointless solutions

DIFFICULT Category

The last novice category contains four items, including both of the

recursive solutions from the test instrument. The group also includes an insertion

sort and a binary table search with records. Half of the items in this group contain

solutions of medium or high classicalness, but each of the items contains at least

one discourse rule violation. The interest level for the items in this group is low.

The novices in this study probably found the items in this group to be

www.manaraa.com

66

difficult. It is well-known in the folklore of computer science education that

students find recursion to be an extremely difficult concept to understand (cf. also

Mynatt, 1984). Neither of the concepts presented in the other two items would

have likely been a point of emphasis in the course work of the novice subjects, in

spite of their relative commonality in computer science, in general. These items

would seem to share primarily a high difficulty level for the novice subjects.

Relation of Categories to Preference

The means for preference are compared between categories in Table 6.2.

As Table 6.2 illustrates, the categories MODELS OF BUBBLE SORTS and

MODELS OF MAIN PROCEDURES have the highest mean preference scores,

followed by the GAMELIKE category, the INTRODUCTORY PROGRAMMING

category, and the DIFFICULT category. The differences among the category

means is significant (F (4,272) = 4.95, p < .001).

Novice Categories and the Environmental Preference Framework

In the previous chapter, the environmental preference framework which

was presented in Chapter II, provided a starting point for a model of expert
preference in the computer science setting. The expert framework of the

preceding chapter expressed the components of making sense and engagement
in both an immediate and a future context. In this section, the results of this study

for the novice subject group are compared to the environmental preference

framework.

Making Sense and Engagement for Computer Science Novices

The categories of the novice dimensional structure seem to be

conceptually distinguishable by at least one issue, namely familiarity. The items

in the MODELS OF BUBBLE SORTS and MODELS OF MAIN PROCEDURES

categories would seem to have high familiarity for the novice group of subjects

since these items resemble common textbook and classroom examples. The

items in the GAMELIKE and INTRODUCTORY PROGRAMMING categories are

www.manaraa.com

67

CATEGORY # OF ITEMS PREFERENCE

3UBBLE SORTS 2 333

UIAINPROCS. 2 333
3AMEUKE 7 ai3
INTRO. PROG. 3 3.04

DIFFICULT 4 2.82

Table 6.2

Mean Preference Levels for
Novice Categories

www.manaraa.com

68

likely to be of only moderate familiarity to the novice subjects. These items

incorporate solutions which may have been seen before by this group of

subjects, but not items which would have been figural. Low familiarity appears to

be one of the issues which makes the elements in the DIFFICULT category more

difficult to work with than the other items in the study.

The levels of novice preference judgements seem to parallel these issues
of familiarity. For items which are perceived as being highly familiar (the

elements in the MODELS OF BUBBLE SORTS and MODELS OF MAIN

PROCEDURES categories), the preference level tend to be relatively high. Items

which are not familiar (the items in the DIFFICULT category) tend to receive lower

preference ratings. Items with intermediate levels of familiarity for the subjects

(members of the GAMELIKE and INTRODUCTORY PROGRAMMING categories)

tend to have moderate preference levels. One can guess that the novices in this

study preferred items which were more familiar. Additionally, items which

resembled each other in terms of familiarity level were perceived as being similar

in some respects.

This issue of familiarity seemed to be involved in two of the independent

variables which effectively predicted novice preference. The items which appear
to be highly familiar (elements in the MODELS OF BUBBLE SORTS categories

and MODELS OF MAIN PROCEDURE categories) also uniformly have high or

medium solution classicalness levels. Items which seem to be less familiar

(elements of the GAMELIKE, INTRODUCTORY PROGRAMMING, and DIFFICULT

categories) tend also to have low solution classicalness levels. The highly

familiar items also have fewer discourse rule violations than the items that are

only moderately or slightly familiar.

The making sense component of the environmental preference framework

seem s to be closely related to the issue of familiarity in the context of novice

computer science preference. In the environmental preference framework,

settings which make sense are those in which the pieces fit together in

meaningful ways. Within the computer science arena, for the novices sampled in

this study, it would appear that items which are more familiar are more likely to

www.manaraa.com

69

have pieces which fit together in meaningful ways.

A second issue, namely challenge, seems to also distinguish the

categories in which the familiarity level of the items is moderate. For both the

GAMELIKE and the INTRODUCTORY PROGRAMMING categories, the items are

simple enough to be solvable by the novices. The difference between the groups

appears to be in terms of challenge. The items in the GAMELIKE category seem

to be more challenging, as reflected by their gamelike quality. By contrast, the

items in the INTRODUCTORY PROGRAMMING category would seem to offer little

challenge, since they bear such close resemblences to classroom materials.

The independent variable of interest seems to have been an expression of

challenge for the novice subjects. The items in the GAMELIKE category

generally received high interest ratings, while the interest ratings for the elements

of the INTRODUCTORY PROGRAMMING category tend to be lower (although not

significantly).

It has been suggested that the emergent novice categories and their

characteristic preference levels parallel the reaction of a novice to items on a test

(see Note 1). Students certainly appreciate test items which are directly from the

textbook and class lectures. The items in the MODELS OF BUBBLE SORTS and

MODELS OF MAIN PROCEDURES categories fit this description and have high

preference ratings. Students also seem to enjoy test items which are challenging
but solvable. Again, the items in the GAMELIKE category seem to match this

description.

Students do not usually like problems of only moderate familiarity and no

redeeming challenge. This description is appropriate for the items in the

INTRODUCTORY PROGRAMMING category. Not surprisingly, the preference

ratings for items in this group are only moderately high. Of course, students do

not appreciate problems which are beyond their abilities. This is an apt

description of the problems in the DIFFICULT category; the preference ratings for

items in this group are low.

In summary, then, preferences of the novices in this study seemed to be

affected by both familiarity and challenge. Items which were familiar or

www.manaraa.com

70

challenging tended to receive higher preference ratings than items with less of

these qualities. This pattern is similar to preference in the environmental context
where higher levels of making sense and engagement lead to higher preference

levels.

Novice Preference in an Immediate and a Future Sense

In the environmental preference framework, the components of making

sense and engagement have meaningful descriptions in both an immediate and

future context. The indicators for the present reflect surface level features of

scenes, and the indicators for the future reflect deep level features. Expert

preferences in this study followed a similar pattern. The components of both

making sense and engagement for that group were related to both surface and

deep structure attributes of the items. Is that pattern, found in both environmental

preference and expert computer science preference, repeated for the novices in
this study?

To answer a similar question for the experts in this study, characteristics of

the subjects' problem representations were considered. In the same way, the

problem representations of the novices will help to answer the current question.

Recall that novices do not invest a large amount of effort in the formation of

an adequate problem representation. Instead they seem to briefly consider the

problem and then move quickly to the generation of a solution. In the current

study, where both the problem and solution were presented, this process was
likely modified to be a brief consideration of the problem followed by both a brief

and possibly a detailed consideration of the presented solution. Of course these

processes are highly dependent on perception (which in this study was captured

in part by preference ratings). During the consideration of the problem and the

initial consideration of the solution, perception of surface level features occurs. If

the subjects further consider the solution, they most likely extract more deeply

embedded information from the items.

The independent variables which affected novice preference differed in

their embeddedness into the items (this is shown in Figure 4.1). Interest,

www.manaraa.com

71

according to the analysis in Chapter IV, is a measured variable which is related to

the surface level features of the problem. One can speculate that the measured

interest levels reflect something of the novices’ quick consideration of the

problem. That is, it is a surface level component. Interest also appears to be tied

to the environmental preference component of engagement since it seem s to

reveal something about how challenging the problem is perceived to be. One

can infer that interest for the novices, as well as for the experts, represents a

surface level manifestation of engagement.

Discourse rule violation status is related to the use of a programming

language. As such, it is probably an immediate feature of solutions. A novice
who is considering a solution in a preliminary way would be likely to notice

violations of the discourse rules. Because discourse rule violation status also

appears to be a component of making sense, it seems reasonable to suppose

that the variable is a surface level manifestation of that component.

The variable of solution classicalness was initially presented as being an

embedded feature of the items. Since solution classicalness is a more subtle

feature of the solutions than the more overt discourse rules, it seem s unlikely that

the variable would affect initial perceptions. It seems more likely that if and when

novices considered the presented solutions in any detail, their perceptions might

be affected by the level of solution classicalness. When the level of solution

classicalness was low, this detailed consideration would be made more difficult

than the situation of medium or high solution classicalness. Since solution

classicalness was previously associated with making sense, it now seems

appropriate to suggest that the variable is linked to making sense in a deep

sense.

No variable measured in this study seemed to be related to engagement in
a deep sense for this group of subjects.

For the novice subject group, then, three of the four facets of the

environmental preference framework seem to have emerged. The matrix in

Figure 6.1 shows a proposed model of making sense and engagement for the

novices. Making sense is described in both a present and future context, while

www.manaraa.com

72

Deep

Surface

Solution
Classicalness

Not captured
in this study

Discourse rule
violation status

Interest

Making Sense Engagement

Figure 6.1

Preference Framework for Novices

www.manaraa.com

73

engagement is expressed only in an immediate sense in this study.

Summary
The pattern of preference ratings of the novices can be thought of as a

reflection of perception. In this chapter, the ratings were grouped together

statistically. The five categories which emerged may reflect to some degree the

perceptual categories which are used by these novices.

The five categories were distinguishable in two ways. On the one hand,
items which resembled each other in terms of familiarity were grouped together.

Also items which were similarly challenging tended to be aggregated.

The issues of familiarity and challenge are similar in some ways to the

issues of making sense and engagement from the environmental preference

framework. These similarities supported the development of a framework of

novice preference. As the novice framework was developed, issues of problem
representation were explored.

www.manaraa.com

74

Notes to Chapter VI

[1] Private conversation on August 1,1986 with Mark Weaver, Rik Belew,
John Vidolich, Kevin Ross, and Steve Kaplan, Ann Arbor, Ml.

[2] The structure of the dimensions for both experts and novices seems to
have been influenced by both the generic item type and the particular content of
the items in the category. For example, the experts' NOVEL USE OF A COMMON
CONSTRUCT category included three matrix rotation problems. A fourth matrix
rotation problem was included in the test instrument but was not included in this
group or in any other dimension. The problem involved the rotation of
prefabricated houses in a new housing development. This problem seems
difficult to understand and somewhat contrived; the rationale for the rotation in the
problem may have been problematic for the subjects.

The OFF OF THE SHELF category for the experts included two sorting
problems and one searching problem. But another sorting problem appeared
with the items in the INTRODUCTORY PROGRAMMING category. One an infer
that the third sorting problem, which involved daily dog weights, seemed so
contrived that it could not be considered as a real-world problem at all. The
content excluded it from the OFF OF THE SHELF category.

The interplay between content and generic item type affected the
membership in the novice categories as well. The two categories of MODELS OF
BUBBLE SORTS and MODELS OF MAIN PROCEDURES clearly reflected the
generic solution types of the items in the categories. However an iterative
procedure appears in both the GAMELIKE and INTRODUCTORY
PROGRAMMING categories. The item in the GAMELIKE category involved the
summation of student grades; the item in the INTRODUCTORY PROGRAMMING
category required the generation of a secret code. While the specific
computational task involved is slightly different, the items both require a small
numerical calculation. From the description, the secret code task would seem to
be more gamelike, and the calculation of grades would seem more mundane.
Yet to the novice students, secret code generation is contrived and grade
calculation is gamelike.

www.manaraa.com

CHAPTER VII

REVIEW, CAUTIOUS APPLICATIONS, AND CONCLUSIONS

In this section, the results of this study are reviewed. Following this review,

the themes which emerged from these results are discussed together. Some

applications for the results are cautiously offered.

Review of Results

In previous chapters, the preference ratings were analyzed in two ways.

Each type of analysis had a different goal. The results of these analyses
provided two different ways to understand the data.

The goal of the first type of analysis was to gain insights into the

relationships between the dependent variable of preference and the independent

variables of interest, problem classicalness, solution classicalness, and

discourse rule violation status. In order to better understand these relationships,

the independent variables were organized into a 2x2 matrix. In that matrix, the

variables were described as either problem or solution variables (Interest and

problem classicalness were problem variables, and discourse rule violation

status and solution classicalness were solution variables). Also, within the

matrix, the variables were described as either deep level, abstract or surface

level variables (Problem and solution classicalness were deep level variables,

and interest and discourse rule violation status were surface level variables).

The analysis technique which was used was analysis of covariance. This

analysis was performed separately for the two groups of subjects.

For the expert subjects, the variables of problem classicalness, solution

classicalness, and interest emerged as important. For the novice subjects, the

75

www.manaraa.com

76

variables of solution classicalness, interest, and discourse rule violation status

were significantly related to preference. In terms of the matrix of independent

variables, these findings suggested that with increasing expertise, computer

scientists tend to shift their focus. For the subjects with lower experience levels,

the surface level variables of interest and discourse rule violation status were

important. With increasingly greater expertise levels, the discourse rule violation

status loses significance, but the abstract variable of problem classicalness gains

importance. Similarly for the novice subjects, the variables which relate to the

solution (solution classicalness and discourse rule violation status) were

important. However with increasing expertise, the trend seemed to be to
emphasize problem features. Again the solution variable of discourse rule

violation status became less important, while the problem variable of problem
classicalness became more figural.

The goal of the second type of analysis was to learn about the perceptual

categories which were employed by the subjects. This was possible in the

current study because preference is, in some sense, an indication of perception.
In order to extract categories from the data, an SSA-III non-metric factor analysis

was performed on the preference ratings. Because the results of the analyses of

covariance indicated that the variables which are emphasized seemed to shift

with increasing expertise, two SSA-III analyses were performed. One was

conducted with the experts' responses, and the second was performed with the

novices' responses.

For the expert subjects, four categories of responses emerged, including

the UNIQUE category, the NOVEL USE OF A COMMON CONSTRUCT category,

the OFF OF THE SHELF category, and the INTRODUCTORY PROGRAMMING

category. These categories were distinguishable by the scope, real-worldness,

and novelty of the problems and the tools to solve the problems. They were also

differentiated by the appropriateness of the solutions for the problems. In terms of

preference, items which had more extensive slope or novelty and appropriate

solutions tended to receive higher preference scores than items which were less

strong in these areas.

www.manaraa.com

77

The independent variables seemed to reflect these issues of scope,
novelty, and appropriateness of solutions. In particular, items which had high

levels of problem classicalness appeared to generally have more limited scope

than items with lower problem classicalness levels. Items with high interest

levels seemed to have broader scope than items with lower interest levels.

Finally, items with unexpected solutions which were paired with relatively

conventional problems resulted in a perception of inappropriateness in some

cases.

For the novices, five categories emerged, including the MODELS OF

BUBBLE SORTS category, MODELS OF MAIN PROCEDURES category,
GAMELIKE category, INTRODUCTORY PROGRAMMING category, and the

DIFFICULT category. These categories seem to be distinguishable by both the
familiarity and challenge level of their items. In terms of preference, items which

were familiar and challenging tended to be more highly preferred than items

which were less strongly representative of these attributes.

The independent variables which were significant to the novices (solution

classicalness, discourse rule violation status, and interest) also seemed to be

related to familiarity and challenge. In particular, items which included solutions

of medium or high classicalness or contained no discourse rule violations tended

to enhance familiarity. Items with high interest levels appeared to have been

perceived as being more challenging than items with low interest levels.

Review of Themes
Two themes, involving the roles of problem representation and preference,

seem to have surfaced in this study. In this section, the two issues are first

discussed separately and then together.

Problem Representation

The analyses of covariance in particular seem to indicate that growing

expertise is accompanied by shifts in importance of some attributes of the items.

While problem and solution features were important to both of the subject groups,

www.manaraa.com

78

the results of the analyses suggested that with increasing expertise the problem

components seem to become generally more important than the solution
features. Similarly deep and surface level features are important to both subject

groups. However, with increasing expertise there appears to be a shift in

emphasis away from the surface level features toward emphasis on deep level

features.

One theme that emerges from the body of expertise literature, both within

and outside of computer science, is that much of the power of the expert lies in

her ability to form a superior problem representation. The expert, as it turns out,

focuses much of her problem solving activity on the formation of such a

representation and little energy on the actual generation of a solution. Novices,

by contrast tend to concentrate on the solution. The formation of an adequate
problem representation involves both the formation of an initial representation

and refinement of the representation. Since both processes involve

considerable interaction with the environment, the expert relies on perceptual

skills throughout.

The results from the analysis of covariance suggest that differences in

problem representations were involved in the differences between the experts
and novices in this study. The experts tended to emphasize problem

characteristics more than solution features and the novices highlighted solution

characteristics. One can infer that the experts focused on problem issues as they

developed their problem representations. In spite of the presented solution, the
experts seemed to solve the problem (that is, formed a problem representation)

as if the solution was not even present. The novices in this study, as they have
done in previous studies, move quickly to the solution.

Erfifereocs.
In the domain of environmental preference a framework, based on

information, has emerged. In this framework, preference is accounted for by two

components: engagement and making sense. Each of these components is

meaningful in both an immediate and a future context. Some aspects of the

www.manaraa.com

79

preference categories for both the expert and novice subject groups appear to be

related to aspects of the informationally-oriented environmental preference
framework.

Expert Preference - For the expert subjects, some patterns of preference seemed

to be related to each of the facets of the environmental preference framework.

The making sense component of the environmental preference framework was

related to expert preference in both an immediate and future sense. For this

group, it seemed to be directly related to the goodness of fit of the pieces of the

items. Since the items were all relatively simple for this group, the pieces of all of
the items seemed to fit together, suggesting that they made sense in a surface

level way. For this group, making sense in a deep context was affected by the
appropriateness of the solutions for the problems.

The engagement component of the environmental preference framework
was also reflected in the experts' preference patterns in both a present and future

sense. This component appeared to have been expressed in terms of issues of
novelty and scope. Novelty and scope were expressed to some degee in

interest levels in an immediate sense, and by problem classicalness in a deep
sense.

Novice Preference - The patterns of novice preference in this study seemed to be

related to three of the four facets of the environmental preference framework. The

making sense component of the environmental preference framework was

related to novice preference in both an immediate and future sense. For this
group, degree of familiarity appeared to be an indicator of making sense. Lack of

discourse rule violations seemed to enhance making sense in an immediate

sense, while high or medium solution classicalness boosted making sense at a

deep level.

The engagement component of the environmental preference framework

was also reflected in the novices' preference patterns, but only in an immediate

sense. Challenge, as reflected by interest, was interpreted to be an indication of

www.manaraa.com

80

engagement in an immediate sense.

Problem Representation and Preference

Both the experts and novices in this study appeared to have characteristic

patterns of problem representations and of perceptions, a s reflected by their

preferences. By considering what happens during the formation of problem

representations for these subjects, one can begin to see how their perceptions
are related.

For experts, the pattern of problem representation formation appears to be

to form an initial representation of the problem, followed by a refinement of that

representation. The formation of the initial representation involves a quick

glimpse of the problem. This quick glimpse is enhanced if all of the pieces of the

stimuli fit together readily. For this group of subjects, since all of the items in the

study seemed to have been perceived to make sense initially, it seems

reasonable to infer that initial representations of all of the items were formed.

If the stimuli initially seem to promise that future discoveries are possible

with further investigation, then the process of refinement has the potential for

payoff. For these experts, items which were "eye-catching," as reflected by high

interest levels, seemed to have been perceived as holding this promise.

For the experts in this study, the refinement process appears to have been

enhanced by the items which were perceived to continue to fit together, through

repeated review. In particular, items in which the specified solution seemed

appropriate for the problem appeared to fit this description. The refinement also

appears to have been enhanced by items which were perceived to be incomplete

and to offer opportunities for further learning. In this study, for the experts, the

items whose situations were of broad scope or whose problems included high

degrees of novelty seemed to enhance the refinement process in this way.

For novices, the process of forming a representation seems to involve a

different sequence of events. In particular, their pattern of formation would seem

to be to form an initial representation of the problem and a limited number of

solutions (which in this study is the one presented solution), followed by some

www.manaraa.com

81

additional consideration of the solution.

In this study, for the novice subjects, formation of an initial representation of

the problem and one solution seemed to have been enhanced if the subjects

perceived the problem as challenging, and the solution as familiar, in a surface

level sense. If any further refinement of their representations occurred, it was

facilitated by solutions which continued to be perceived as familiar, after repeated

scrutiny.

.Some-Cautious Applications
The results of this study suggest that, within the limited cross section of

computer science sampled, perceptions, as reflected by preferences do in fact

change with increasing expertise. Moreover problem representations and their

formation, which depend on perception, take on different forms with increasing

expertise. Is it possible to apply these results to any real domains in computer

science?

At least one area of computer science would seem to be able to benefit

from the results of this study. Computer science education, by its nature, involves

novices and experts. For example, for an expert who is teaching a class of
novices, similar to the novices sampled in this study, the behavior of the novices

may seem to be bizarre. Consider the following scenario:

An experienced computer science educator has just completed a lecture
about an important algorithm in computer science (such as quicksort) to a
group of students, similar to the novices in this study. At least one novice
at this level will invariably ask about the semi-colon in line 2 or line 3, etc.

This author, having experienced this scenario many times, has often

wondered if the student who asked the question was asleep during the lecture

and simply noticed the semi-colon as he or she was waking up. Unfortunately,

this explanation is rarely adequate, since this type of apparently inappropriate

question often comes from conscientious and alert students.

The results of this study suggest that given a problem (sorting), an

www.manaraa.com

82

algorithm (quicksort), and some program code (including the questionable

semi-colon), novices will tend to focus on the solution, particularly the surface

level issue of the semi-colon. The expert (in this case, the author), by contrast, is

concentrating on the problem and the abstract solution features (ie the algorithm)

and virtually ignoring the surface level solution features, such as the semi-colon.

In other words, the expert and novices in this scenario seem to perceive the
presented material differently.

This author, like other computer science educators, has noticed many
other instances of apparently bizarre student behavior (A few colorful examples

include interest in packed arrays of records, interest in base minus two arithmetic,

and a program named MongolianYakHerder with the programming variables

named after yaks.). One possible application of this study might be to enhance

the awareness of computer science educators that novice perceptions are

different. These perceptions are not really bizarre, but are consistent with and
provide important clues into the ways that the novices structure their computer
science world.

This study also revealed something about the characteristics of computer

science entities which lead to higher preference levels. For example, the results
suggested that for novice programmers, settings which are both familiar and

challenging, reflected by interestingness, tend to be preferred. For computer
science educators, this suggests that the programming examples and

assignments, which form the basis for programming education, should include

some degree of each of these components. Given a choice between two

otherwise identical assignments or examples, the one which is more highly

endowed with these attributes is likely to be preferred. So, for example, given the

choice of an assignment to implement the game of Battleship (a familiar game but
a challenging program) or Gorilla Rescue (a game invented by this author which

is the game of Battleship in the disguise of a game about rescuing mountain

gorillas from poachers), the students may be more likely to prefer Battleship.

(This is supported by this author's experience.)

A second application of this study and its results arises from the

www.manaraa.com

83

methodology. In the current study, the methodology involved a series of twenty

"software development snapshots." A software development snapshot consisted

of a brief description of a software engineering situation, statement of specific

software development problem, and a partial program solution to the problem,

each presented on one page. Unlike other types of stimuli which are often used

in behavioral experiments in computer science, the snapshots were both short
enough to be managable in an experimental setting and rich enough to preserve

some aspects of real software engineering situations. That this methodology

produced meaningful results suggests that it likely may have further application in

other studies of human-computer interactions.

Conclusion
A key motivation in undertaking a study of this sort was to develop more

than a folklorish approach to aesthetics and its interaction with expertise within

computer science. The study was conceived under two theoretical premises: 1.

Characteristics of the problem representation are closely tied to expertise. This is

a general phenomenon which is associated with many facets of problem solving,
including the formation of preference judgements. 2. The environmental

preference model, due to the Kaplans (1982) may have applicability to domains

aside from the environmentally-oriented ones, since it is based on the structuring

of information rather than specific content.

Both of these theoretical notions were expressed in the results of this

study. Increasingly sophisticated problem representations seem to be

characteristic of experts in this study, as indicated by increasing focus on

problems and solutions, even in the presence of presented solutions. As

expertise level changes, the perceptions which underlie problem representations

change as well. Moreover, the environmental preference framework provided a

meaningful context for the patterns of preferences of both the experts and novices
in this study.

www.manaraa.com

APPENDICES

84

www.manaraa.com

85

APPENDIX A

UNSUCCESSFUL ANALYSES

The items in the test instrument were systematically varied across

variables of problem classicalness, solution classicalness, and discourse rule

violations. Additionally, demographic variables of expertise level and gender

were collected. Expertise level, problem classicalness, and solution

classicalness were meaningfully included in the multiple regression models.

Discourse rule violations were also included in that model; however the model
incorporated only the presence or absence of one or more violations. This

section reports on analyses based on gender, and on specific variations of the
discourse rule violations.

BpIe-QfGender
The mean-per-item preference scores were calculated for male and female

subject groups. An analysis of variance was performed, with the 40

mean-per-item preference ratings as the dependent variable and gender as the

independent variable. No significant preference differences, due to gender were

found.

Specific Discourse Rule Violations

For both the double duty rule and the construct affordances rules, mean

categoiy scores for both the violate and no violate condition were calculated for

each subject. For each discourse rule, a two-way analysis of variance was

performed. The independent variables were category membership and expertise

level; the dependent variable was the set of category scores. Significant

category effects were found only for the double duty rule (F (90,1)=22.29,

pc.0001); no significant effects were found for category membership for the

construct affordances rule, expertise level for either rule, or interactions for either

rule.

www.manaraa.com

86

The effect of the discourse rules was also tested between pairs of

functionally equivalent solutions of the same type, in which one member of the

pair had a violation of the rule. Two-way analyses of variance were conducted

on the pairs. The independent variables were discourse rule violation status and

expertise level; the dependent variables were the preference ratings for the items

in the pair. Four comparisons were possible for the double duty rule; ten

comparisons were possible for the construct affordances rule.

For the double duty rule, one significant effect occurred, due to the

violation status of the double duty rule. The difference was between two main

procedures with high levels of detail (F (90,1)=6.12, p < .02). Higher preference
ratings were given in the non-violation case.

In four of the comparisons of the construct affordances rule, a significant

effect occurred. In all cases, the significant effect was due to the violation level of

the construct affordances rule. No significant effects due to expertise level or

interaction between expertise and the violate condition occurred. The results of

the analysis of the discourse rules is shown in Table A.1.

In both the pair of exhaustive searches and the pair of detailed main

procedures, the WHILE construct is preferred over the REPEAT-UNTIL construct;

the WHILE is appropriate in the search items and inappropriate in the main

procedures.

The results of these two pairwise comparisons involving the WHILE

construct, which showed significant differences, seem to suggest that the WHILE
may be preferred instead of the REPEAT, even when it is not appropriate in the

strictest sense. However, this iterpretation must be made cautiously; two other

pairs of items which involved REPEAT and WHILE showed no significant effects.

The pair of detailed main procedures was also included as a pair in which

one item contained a double duty violation and one did not. In fact, the same

item contains both types of violations. Given this confounding, it is impossible to

know if the pairwise difference is the result of one, both or none of the discourse

rules.

The other two pairs which showed significant differences involved

www.manaraa.com

87

ANALYSIS SIGNIFICANT COMMENTS

Mean Category Scores

1. Double Duty Rule
Expertise
Violation Status
Interaction

2. Construct Affordance Rule
Expertise
Violation Status
Interaction

ns
F(90,1) -22.29, p<.0001
ns

ns
ns
ns

Pairwise Comparisons -
Double Duty Rule

1. Jungle Escape-Arrange H.
2. South Pole - Quilting
3. Weights - Seawater

Expertise
Violation Status
Interaction

4. Library System - Shoe S.
Expertise
Violation Status
Interaction

ns
ns
ns

ns
F(90,1) - 6.12, p<.02
ns

no violation preferred

Pairwise Comparisons -
Construct Afford

1. Jungle Escape - Arrange H.
2. South Pole • Quilting
3. Contributions - Price List
4. Weights - Seawater
5. Pet Poison Hotline-Thunder
6. Archeology • Rare Wild Flora

Expertise
Violation Status
Interaction

7. Library System • Shoe Store
8. Jewelry Store • Toxic Subs
9. Secret Code-Grades
10. Lottery Number-Legis. Vote

expertise, interaction

ns
ns
ns

see above
F (9 0 ,1)-16.48, p<.0001

F(90,1) - 7.52, p<.01
F(89,1)-17.61, p<.0001

ns

violation preferred
no violation preferred
violation preferred
no violation referred

Table A.1- Details of Discourse Rule Violations

www.manaraa.com

88

numerical calculation problems. In one case, the violation condition (procedure

used instead of a function) was preferred. In the other case, the non-violation

condition (function used instead of procedure) was preferred. This apparent

paradox makes these results difficult to interpret.

Comments

Soloway and Ehriich's (1984) original study of the discourse rules showed

significant performance differences between experts and novices, violation and

no violation condition, and the interaction of expertise level and violation status.

In particular, they found decreased performance when the double duty rule was
violated or when the WHILE construct is substituted for the IF construct. In the

pairs of items in the current study in which a WHILE construct was substituted for
an IF construct, no significant differences occurred.

This noticable difference in results can be explained, at least in part, by

difference in the stimuli in the two studies. Soloway and Ehrlich used

programming solutions as their only stimuli; the task in the current study involved

both problems and solutions. As the results of the previously-described

regression analysis indicates, experts focus on the problem component of the

task and novices focus on the solution. It is not surprising that the discourse rules

did not significantly contribute to differences between novices and experts in the

current study. Experts apparently did not consider the surface level

characteristics of the solutions when they made preference judgements. Figure
A.1 summarizes the differences between Soloway and Ehrlich (1984) and the

current study.

Soloway and Ehrlich (1984) assumed that their performance

measurements were valid indicators of what programmers liked; that is, their

preferences. However, because this assumption has not been tested empirically,

either in the current study or elsewhere, its validity remains unknown.

www.manaraa.com

89

Similarities

Current Study Soloway and Ehrlich (1984)

1. Presents incomplete item; 1. Presents incomplete item;

Subject relies on Subject relies on

contextual information contextual information

Differences

1. Collection of preference 1. Collection of performance

ratings measurements

2. Presentation of problem 2. Presentation of solution

and partial solution

Figure A.1 - Similarities and Differences
between current study and Soloway
and Ehrlich (1984)

www.manaraa.com

90

APPENDIX B

SAMPLE TASK ITEM

The following pages (35) contain a sample of the description of the project

and the task which were completed by the subjects in this experiment.

www.manaraa.com

91

Perception of Software Quality

Project Description:

Within computer science, factors which describe 'what programmers like in
programs' are often considered to be idiosyncratic. Such factors are
typically attributed to individual style.

The purpose of this project is to explore an alternate hypothesis. That
alternative is that there is widespread similarity among the factors that
describe "what programmers like in programs." A related goal is to
identify some of the factors that predict what programmers like in
programs.

Please do not discuss this experiment with anyone else.

If you have any questions about this project after we are through, please
feel free to contact:

Laura Leventhal
Computer Science Department
Bowling Green State University
Bowling Green, Ohio 43403

419 - 372 -2765

www.manaraa.com

92

DIRECTIONS

Task Description:

1. The following pages contain a set of problems for you to work with.
Each problem is presented with solution.

2. The solution that is presented is a program segment. This means that
the solution only shows those operations that are required to solve the
problem. All other declarations or code that are indirectly related to the
problem or the solution are not specified.

3. Each of the segments is syntactically and logically correct.

4. You will be asked for vour opinion of each of the presented program
solutions.

3. The problems and solutions should be self-explanatory; however, if you
have any questions, at any time, feel free to ask the monitor.

6. THIS IS NOT A TEST OF YOUR PROGRAMMING ABILITY.

Directions:

— Each of the problems is independent of any of the other problems. This
means that you should not compare any of the problems and answers with
any of the other problems and answers.

DO NOT GO BACK TO A PROBLEM THAT YOU HAVE ALREADY FINISHED
WITH!! Once you answer a problem. GO ON TO THE NEXT ONE

— You may write on the test booklet.

— If you have any questions at this point, please ask the monitor.

— You may start when the monitor gives you the signal.

Thank you for you participation.

www.manaraa.com

93

1. PROBLEM: A friend of yours has a dog who is overweight. The dog has
bees on a diet for several months. Tour friend has been weighing his dog
everyday.

Now your friend is curious about the range of weights that the dog has had.
Tou agree to write a program that will sort the weights in ascending order
and print a report

The following code segment compiles the list and generates the report.

Remember, the segment performs the operation correctly: any variables,
functions, and procedures have been correctly declared elsewhere.

for i > 1 to number-of-weights do
begin

w g tJn d e i > 1;
found > false;
while (sot found) and (wgtJsdex <- i) do

if (weights [i(< update_weights [wgtJndex])
then found :• true

else wgtJndex > w gtJsdex • 1;
for j :• i downto wgtJndex do

update_weighls [j ♦ 1] > update_weights [j];
update_weights [wgtjndexl > weights [i!

end;
prinLweights:

Rate this program segment

A - unsatisfactory D * highly acceptable
B - marginally acceptable E • elegant
C • adequate

www.manaraa.com

94

2. PROBLEM: You are asked b y the government of a small country to
develop an encoding algorithm for their 'number of the day'. Their
number of the day is used as a password into their computer system in
vhich all of the data about their extensive national park system is stored.

The following procedure produces a secret code.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

procedure secreL_code (seed, key: integer; seed_table: seed_lype;
var day_code: integer);

var i: integer;
begin

day_code > truly_random(seed);
for i 1 to key do

day_code > day_code *
seed_tabIe(truly_random(i))

end;

Rate this program segment:

A * unsatisfactory D - highly acceptable
B • marginally acceptable E • elegant
C • adequate

www.manaraa.com

95

3. PROBLEM: You are writing a program for the game, jungle Escape.
Jungle Escape is a board game for two players. In the game, the physical
position of the player, in relation to the board, is a relevant parameter. In
the computer version of the game, you must be able to rotate the board 90
degrees.

The following code segment accomplishes the required rotation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

l:*
while (i <- boardsize) do

begin
j 1;
while (j <- boardsize) do

begin
o ffse t(b o ard size * (j -1)) •

((boardsize - i) * 1 fc
new_offset :* ((i -1) * boardsize) * j;
new_board |new_offsell :*

board [offset!;
j j ♦ I

end:
i :• i ♦ 1

end:
copyboard (board, new_board);

Rate this program segment:

A • unsatisfactory D - highly acceptable
B • marginally acceptable E • elegant
C ■ adequate

www.manaraa.com

96

4. PROBLEM: You are asked by your state government to develop an
algorithm to generate a lottery number. This lottery number will be used
as the winning number for the 'weekly Jackpot Bonanza.

The following procedure produces a lottery number.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

procedure number_generator (seed, key: integer;
var jackpot_number: integer);

begin
if (key - D then

jackpounumber :• random_time(seed)
else

jackpol-number > seed *
number-generator

(random-time(seed), (key -1),
jackpoLjiumber)

end;

Rate this program segment:

A - unsatisfactory D - highly acceptable
B - marginally acceptable E - elegant
C • adequate

www.manaraa.com

97

3. PROBLEM: You have just bees elected as the treasurer of your favorite
charitable organization. Your first job is to sort the contributions from a
recent telephone campaign and print a report The sorted contributions
should be in order from generous to most generous.

The following code segment compiles the list and generates a report

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i 1 to number_of_contributions do
for j > i to number_of_contributions do

if (contribution (jj < contribution (i|) then
begin

save > contribution (jj;
contribution (j j c ont r ibu t ion lit
contribution [i] s a v e

end;
prinUreporf

Rate this program segment

A - unsatisfactory 0 - highly acceptable
B « marginally acceptable E * elegant
C - adequate

www.manaraa.com

98

6. PROBUM: A small jewelry store specializes in watch repairs. Not
surprisingly, the store has a huge inventory of watch parts. Every day new
parts are delivered. The owner and chief repair technician asks you to
write an inventory program.

The following code segment updates the part catelogue.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

read (deliveryJtem);
if (catelogue [ll.part_number > 0) then

begin
updated false;
count > 2

end
else up d a te d fa l s e ; .
while ((not updated) and (count <- catelogue IlLpart-number))

do
if (item - catelogue (countLpart_number) then

begin
catelogue [count|.quantity >

catelogue [countlquaniity»1;
updated > true

end
else count count * 1

Rate the program segment:

A « unsatisfactory D - highly acceptable
B - marginally acceptable E • elegant
C • adequate

www.manaraa.com

99

7. PROBLEM; You have just been appointed as the Official Magistrate of
Development by the Gty CoundL Your primary duty as Magistrate is to
construct neighborhoods out of pre-fabrkated houses. You must place
houses on the street so that the front door faces the street.

This is a tedious job so you appoint a computer salesman as your assistant
and receive a free computer as compensation.

You and your assistant write a program that will take a grid, which
represents a pre-fabricated house, and reorient the grid on any street
appropriately.

The following code segment accomplishes the required reorientation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i > I to house-size do
for j > 1 to house-size do

new_house [(housejize * (j -1)) ♦
((house_size - i) ♦ 1)J>

house I((i -1) * house_size) * j]:
displayJiouse (house, newjtouse);

Rate this program segment:

A - unsatisfactory D « highly acceptable
B • marginally acceptable E - elegant
C • adequate

www.manaraa.com

100

8. PROBLEM: Tour next exam in your computer science class consists of
true and false problems. Tour instructor is exhausted and oners to assign
you an "A" in the class if you will v rite a test grading program.

The program v ill input the test ansvers for each student. Tou are to
compare the student's ansvers v ith a hey. The student must have at least
70% of the ansvers right to pass the exam. For each exam vhich is input,
you are to report ■’Pass” or "Fail."

The folloving function finds a ra v score for a single exam.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

function grade (first_queslion. last-question: integer exam, key:
exam_type): integer;

var score, i : integer;
begin

score :• 0;
for i > first_question to last_question do

if exam [i| • key fil then
s c o r e s c o r e ♦!;

grade > score
end;

Rate this program segment:

A • unsatisfactory D • highly acceptable
B - marginally acceptable E • elegant
C • adequate

www.manaraa.com

101

9. PROBLEM: You are to write a main procedure for an on-line ordering
program, th e program vill be used by the Technocrat On-Line Shoe
Company. Since Technocrat wants to sell as many pairs of shoes as
possible, the buyer is allowed to use the ordering system as many times as
he or she would like.

The following code segment is the main procedure for the ordering
program.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

begin
writeln Center y to order again,

anything else to quit');
readln (answer);
while (answer - y) do

begin
technocrat_profile;
technocraumatch-byJlt;
print_order_descript;
writeln Center y to order again.

anything else to quit');
readln (answer)

end
mi

Rate this program segment:

A - unsatisfactory D * highly acceptable
B ■ marginally acceptable E • elegant
C • adequate

www.manaraa.com

102

10. PROBLEM: Northwest Ohio contains a v ide variety oT historical
artifacts. An archeologist has a grant from a local historical society to
collect and catelogue some of these valuable artifacts. This archeologist has
organized the artifacts by type.

You are asked by the archeologist to v rite a program that maintains an
inventory of the dig.

The following code segment updates the artifact catelogue.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

found > true;
done > false;
read (artifact-type);
while ((catelogue(O)jtumber > 0) and (not done))

begin
f i r s t 1;
last catelogue (OLnumber;
found > false;
done > true

end
while ((last >- first) and (not found)) do

begin
middle > (first ♦ last) div 2;
if (artifacuype < catelogue (middlel-number)

then last :• middle -1
else if (artifact_type > catelogue (middleUumber)

then first > middle ♦ 1
else begin

catelogue [midd!e|.quantity >
catelogue (middle].quantity ♦ 1;

found true
end

end

Rate this program segment:

A • unsatisfactory D - highly acceptable
B - marginally acceptable E - elegant
C • adequate

www.manaraa.com

103

11. PROBLEM: You are to write a main procedure for a library reference
system. This system helps overworked undergraduate students generate
term papers on any subject Since a student may have to v rite more than
one paper, the user may invoke the system as many times as he or she
vouid like.

The following code segment is the main procedure for the system.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

begin
quit :» false;
repeat

current_topic_situation;
paper-generator;
print_reference_results;
writeln Center y to use again, n to quit');
readln (answer);
if (answer <> y) then

quit :« true
until (quit)

end.

Rate this program segment:

A * unsatisfactory D * highly acceptable
B • marginally acceptable E - elegant
C • adequate

www.manaraa.com

104

12. PROBLEM: The plants of the world are in trouble: many rare plants are
facing extinction. A botonist has a grant from a local horicuitural society to
observe, count, and catelogue some of these rare plants. This botonist has
organized the plants by type.

You are asked by the botonist to write a program that maintains an
inventory of the plant findings.

The following code segment updates the plant catelogue.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

read (plant-type);
if (not empty) then

begin
f i r s t 1;
last :• catelogue_size;
f o u n d f a l s e ;
while ((Jast >- first) and (not found)) do

begin
middle :• (first ♦ last) div 2;
if (plant-type < type_number [middle])

then last > middle -1
else if (plant-type > type_number [middle])

then first > middle ♦ 1
else begin

type_quantity [middle)
type-quamity [middle] ♦ 1;

found > true
end

end
end

else;

Rate this program segment:

A • unsatisfactory D - highly acceptable
B - marginally acceptable E • elegant
C • adequate

www.manaraa.com

105

13. PROBLEM: You have been working as the aquarium curator at the zoo.
You installed a saltwater tank several months ago, and you have been
importing seawater ever since. You would like to start making the
seawater yourself, so you have been analyzing some of the imported
samples.

You have noticed considerable variation in the magnesium
concentration of the imported seawater. Now you would like to organize
your concentration data. You write a program to sort the data and print a
report.

The following code segment compiles the list and generates a report.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i > 1 to nu mber-of_concentrations do
begin

magnesJndez :• 0;
repeat

magnesLindez magnesJndez ♦ 1
until ((origJist (il < updateJist [magnesJndez!) or

(magnesJndez > i))
for j i downto magnesJndez do

updateJist (j * 1] > updateJist (j):
updateJist (m ag n eaJn d ezIo rig Jis t [il

end;
printjnagnesLreport:

Rate this program segment:

A • unsatisfactory D • highly acceptable
B - marginally acceptable E - elegant
C * adequate

www.manaraa.com

106

14. PROBLEM: It is 1911 and you are lucty enough to be the navigator on
Roald Amundsen's expedition to the South Pole. You are ahead of your
time; you have a small microcomputer.

The polar area is represented on a map as a square that is made up of
small square segments.

The South Pole presents an interesting navigational challenge. No matter
which way you move from the Pole, you are going north. Your navigational
computer must be able to rotate the map to correspond to your position.

The following code segment accomplishes the required rotation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

i> 1;
while (i <- side jize) do

begin
j > 1;
while (j <- side_size) do

begin
offset (side_size - i) * 1;
guide_map [i.j] >

map [j, offset);
j > j ♦ 1

end;
i i ♦ 1

end;
display_map (map, guide_map):

Rate this program segment:

A - unsatisfactory D • highly acceptable
B - marginally acceptable E • elegant
C • adequate

www.manaraa.com

107

IS- PROBLEM: You have recently developed an interest in making quilts.
Because these quilts are labor-intensive and you do not want to make a
mistake, you need a computer simulation of the quilt and the quilt-making
process. One of the operations that your simulation must indude is a
rotation operation; this corresponds to rotating the quilt in its frame.

The following code segment accomplishes the required rotation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly dedared elsewhere.

for i > 1 to quiltsize do
for j > 1 to quiltsize do

new_quilt fi.jj
quilt [j, ((quiltsize - i) * 1)1;

copyquilt (quilt, new.quilt);

Rate this program segment:

A * unsatisfactory D - highly acceptable
B • marginally acceptable E - elegant
C - adequate

www.manaraa.com

108

16. PROBLEM: Your company uses a v id e variety of chemical substances;
some of them are toxic.

Your company would like to keep a record of the number of employees
who come into contact with a toxic substance in their normal work.

You are asked by tbe chairperson of tbe board to write a program that
maintains an employee toxic substances inventory.

Tbe following code segment updates tbe employee catelogue.

Remember, tbe segment performs tbe operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

read (substance_type);
if (number_substances > 0) then

begin
count > 1;
repeat

if (substance_type - type_number (count!) then
substance_quantity [count]

substance_quintity * 1
else count > count * 1

until (count > number_substances)

Rate tbe program segment:

A - unsatisfactory 0 - highly acceptable
B • marginally acceptable E • elegant
C • adequate

www.manaraa.com

109

17. PROBLEM: Some friends of yours are having a four-family garage sale.
These friends have cleaned out their basements and attics. Together, they
have enough bargains to fill a two-car garage.

Nov your friends want to place an ad for their sale in the newspaper.
They want to print the prices in the ad. with the lowest prices first. You
agree to write a program that will sort the prices in ascending order and
print the lis t

The following code segment compiles and generates the list.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i 1 to number_of.bargains do
for j > (i ♦ 1) to number_of_bargains do

while (bargains [jl < bargains (i|) do
begin

temp-bargain :• bargains [j];
bargains fjj > bargains [il:
bargains (il > temp-bargain

end;
priht-bargains;

Rate this program segm ent

A - unsatisfactory D - highly acceptable
B • marginally acceptable E • elegant
C • adequate

www.manaraa.com

110

18. PROBLEM: Tour state legislature is having a hard time evaluating the
voting on bills. When the votes are tabulated by hand, a few votes usually
seem to disappear.

The governor has allocated a special fund to pay for a computerized vote
tabulation system, and has appointed you as the programmer.

Tour program inputs a vote from each legislator on each bill. For each bill
you are to tabulate the votes. Depending on the type of legislation,
different numbers of "aye" votes are required to pass the bill.

The following function tabulates a raw score for a single bill.

Remember, the segment performs the operation correctly, any variables,
functions, and procedures have been correctly declared elsewhere.

function tab-bili (first-voter. lasLvoter: integer:
bilLvote: tabuiaie_type): integer;

begin
if (first-voter • lasLvoter) then

if bilLvote [firsLvoterl - 'a' then
t a b - b i l l 1

else tab_bill > 0
else

tab_bill > tabJbill (firsLvoter,
(lasuvoter div 2). bilLvote) *

tab_bill ((lasLvoter div 2*1).
lasuvoter, bilLvote)

end;

Rate this program segment:

A • unsatisfactory D * highly acceptable
B • marginally acceptable E • elegant
C » adequate

www.manaraa.com

I l l

19. PROBLEM: You are to write a main procedure for tbe Pet Poison Hot
Line. Since a pet may have swallowed many poisons, the pet owner is
allowed to use the hot line as many times as he or she would like.

The following code segment is the main procedure for the hot line.

Remember, the segment performs the operation correctly: any variables,
functions, and procedures have been correctly declared elsewhere.

begin
repeat

current_pet_situation;
diagnostic-symptoms:
print_anlidote

until (finished)
end.

Rate this program segment:

A - unsatisfactory D ■ highly acceptable
B - marginally acceptable E • elegant
C * adequate

www.manaraa.com

112

20. PROBLEM: You are to write a main procedure for tbe On-Line Thunder
Storm Locator for Pilots. Since a pilot may fly in different areas, the user
of this system must be allowed to check as many areas as be or she would
like.

The following code segment is the main procedure for the system.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

begin
while (pilot_wantSL.tOLknow) do

begin
meteorologicaLscan;
meteorologicaLpredictor;
display_atorm_pattern3

end
end.

Rate this program segment:

A - unsatisfactory D • highly acceptable
B • marginally acceptable E • elegant
C * adequate

www.manaraa.com

113

21. Tour age is:
A. Under 18
B. 1 8 - 2 3

D. 3 5 - 4 9
E Over 50

C 2 4 - 3 4

22. Tour sez is:
A. Female
B. Male

23. Tour major is:
A. Pre • Computer Science; College of Arts and Sciences
B. Computer Science
C College of Arts and Sciences; outside of Computer Science or

Pre-Computer Science
D. College of Business
E Other

24. Tour grade point average overall is:
A. 3.5 - 4.0 D. 2.0 - 2.49
B. 3 .0-3 .49 E Below 2.0
C 2.5 - 2.99

25. Tour grade point average in your major: (if you have not undecided

C 2.5 - 2.99

26. Tour class rank is:
A. Freshman
B. Sophomore
C Junior
D. Senior
E. Graduate student or post - baccalaurate

27. The number of college-level computer science courses that you have
completed:

your major, skip this question)
A. 3.5 - 4.0
B. 3.0 - 3.49

D. 2.0 - 2.49
E Belov 2.0

A. 1
B. 2
C 3

D. 4 - 5
E 6 or more

www.manaraa.com

114

28. The number of years that you have worked as a programmer, systems
analyst, or software engineer

B. Less than one. part time L More than one. full time
C One or more, part time

29. The number of computer science courses that you finished in junior
high or high school-

C One year

30. Did you take the Advanced Placement (AP) Computer Science Course in
high school?
A. Yes
B. No

31 - How many hours of programming do you do for fun in a one week
period, on the average?
A. None D. Five to fifteen hours
B. One hour E. Greater than fifteen hours
C Two to five hours

A. Never D. Less than one. full time

A. None
B. One semester

D. Two years
E. More than two years

www.manaraa.com

115

32 PROBLEM: A friend of your* has a dog who is overweight. The dog has
been on a diet for several months. Tour friend has been weighing his dog
everyday.

Now your friend is curious about the range of weights that the dog has had.
You agree to w rite a program that will sort the weights in ascending order
and print a report.

The following code segment compiles the list and generates the report.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i 1 to number_of_weights do
begin

wgt-index > 1;
found > false;
while (not found) and (w gtJndex <- i) do

if (weights (il < update_weights [wgtJndex])
then found true

else w gtJndex w gtJndex * 1;
for j > i downto w gtJndex do

update_weights Ij ♦ 1]:« update_weighls IjJ;
update_weights IwgtJndex] > weights (i|

end;
print_weights;

Rate how interesting you found this
problem/solution pair, on a scale
from ‘A* to "F.

8
c
o

A - highly uninteresting

E • extremely interesting

www.manaraa.com

116

33. PROBLEM: 7ou are asked by tbe government of a small country to
develop an encoding algorithm for their ’number of the day’. Their
number of the day is used as a password into their computer system in
which all of the data about their extensive national park system is stored.

The following procedure produces a secret code.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

procedure secret-code (seed, key: integer; seed_table: seedLtype;
var day_code: integer);

var L* integer;
begin

day-codetruly_random(seed);
for i > I'to key do

- day_code > day_code *
seed_lable(truly_random(i))

end;

Rate how interesting you found this
problem/solution pair, on a sa le
from "A’ to T .

B
c
o

A • hitbty uniniem tiat

E • extremely iocerntinf

www.manaraa.com

117

34. PROBLEM: You are writing a program for tbe game. Juagle Escape.
Jungle Escape is a board game for two players. In the game, the physical
position of the player, in relation to the board, is a relevant parameter. In
the computer version of the game, you-must be able to rotate the board 90
degrees.

The following code segment accomplishes the required rotation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

i > 1;
while (i <- boardsize) do

begin
j > l ;
while (j <• boardsize) do

begin
offset :• (boardsize * (j - 1)) ♦

((boardsize - i) ♦ lh
new_offset.;- ((i - 1) • boardsize) ♦ j;
newJboard [new_affset| >

board [offsetl;
j > j * 1

end;
i > i * 1

end;
copyboard (board, new_board);

Rate how interesting you found this
problem/solution pair, on a scale
from "A" u> T .

B
c
D

A • hifbty winxemtina

E • ot/em aly ia te rn tin f

www.manaraa.com

118

35. PROBLEM: You are asked by your state government to develop an
algorithm to generate a lottery number. This lottery number will be used
as tbe winning number for tbe weekly Jackpot Bonanza.

Tbe following procedure produces a lottery number.

Remember, tbe segment performs tbe operation correctly, any variables,
functions, and procedures have been correctly declared elsewhere.

procedure number_generator (seed, key: integer;
var jackpot_number: integer);

begin
if (key • 1) then

jackpoLnumber > random_time(seed)
else

jackpot_number > seed *
number_generator

(random_time(seed), (key -1).
jackpot_number)

end;

Rate bow interesting you found this
problem/solution pair, on a scale
from "A' to T .

B
C
D

A - highly aoidierenins

E - extremely interesting

www.manaraa.com

119

36. PROBLEM: Tou have just bees elected as the treasurer of your favorite
charitable organization. Tour first job is to sort the contributions from a
recent telephone campaign and print a report. The sorted contributions
should be in order from generous to most generous.

The following code segment compiles the list and generates a report

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i > 1 to number_of_contributions do
for j i to number_of_contributions do

if (contribution [jj < contribution (ij) then
begin

s a v e c o n tr ib u tio n [jj;
contribution [jj:« contribution [ij;
contribution [i] save

end;
print_report;

Rate how interesting you found this
problem/solution pair, on a scale
from "A" to T .

A ■ bifbly oaialerestioi
B
C
D
E • extremely in tern tin f

www.manaraa.com

120

37. PROBLEM: A small jewelry store specializes in watch repairs. Not
surprisingly, the store has a huge inventory of watch parts. Every day new
parts are delivered. The owner and chief repair technician asks you to
write an inventory program.

The following code segment updates the part catelogue.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly dedared elsevhere.

read (deliveryJtem);
if (catelogue fl].part_aumber > 0) then

begin
updated > false;
count > 2

end
else updated > false;
while ((not updated) and (count <- catelogue (H.part_number))

do
if (item - catelogue (counllpirt_number) then

begin
catelogue [countlquantity

catelogue [countLquantity ♦ 1;
updated true

end
else count count ♦ 1

Rate how interesting you found this a • highly mtmtemting
problem/solution pair, on a scale B
from “A" to X . c

o
E - ectrefMly interesting

www.manaraa.com

121

38. PROBLEM: Tou have just bees appointed as the Official Magistrate of
Development by the Gty Council Tour primary duty as Magistrate is to
construct neighborhoods out of pre-fabricated houses. Tou must place
houses on the street so that the front door faces the street

This is a tedious job so you appoint a computer salesman as your assistant
and receive a free computer as compensation.

Tou and your assistant write a program that will take a grid, which
represents a pre-fabricated house, and reorient the grid on any street
appropriately.

The following code segment accomplishes the required reorientation.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

for i 1 to house_sizc do
for j > 1 to house_size do

new_house [(houseuize * (j -1)) ♦
((house_size - i) ♦ 1)J :•

house f((i - 1) * housc-size) ♦ jj;
display.house (house, new_housefc

Rate how interesting you found this
problem/solution pair, on a scale
from “A" to X .

B
C
0

A • highly m im cnstiat

E • extremely interesting

www.manaraa.com

122

39. PROBLEM: Tour next exam in your computer science class consists of
true and false problems. Tour instructor is exhausted and offers to assign
you an "A" in the class if you will write a test grading program.

The program will input the test answers for each student Tou are to
compare the student's answers with a key. The student must have at least
70s of the answers right to pass the exam. FOr each exam which is input,
you are to report "Pass" or “FaiL"

The following function finds a raw score for a single exam.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

function grade (first-question, last-question; integer; exam, key:

var score, i : integer;
begin

exam-type): integer.

score > 0;
for ifirs t-q u estio n to last-question do

if exam [il - key [il then
score:- score *1;

gradegrade :- score
end;

Rate how interesting you found this
problem/solution pair, on a scale
from "A" to X .

A • b ith ly u s i f l iv ts t io i
B
C
0
E ■ txiremtly in tern tio (

www.manaraa.com

123

40. PROBLEM: Tou are to write a main procedure for an on-line ordering
program. Tbe program will be used by tbe Technocrat On-Line Shoe
Company. Since Technocrat wants to sell as many pairs of shoes as
possible, tbe buyer is allowed to use tbe ordering system as many times as
he or she would like.

Tbe following code segment is tbe main procedure for the ordering
program.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

readln (answer);
while (answer • 'y') do

begin
technocrat_profile;
technocrat match h y fit;
print-order-descript;
writeln ('enter y to order again.

begin
writeln Center y to order again,

anything else to quit');

anything else to quit’);
readln (answer)

end
end.

Rate how interesting you found this
problem/solution pair, on a scale
from "A" to T .

B
c
o

A • hl|bty oaiotereniot

E • extrencly interesting

www.manaraa.com

124

41. PROBLEM: Northwest Ohio contains a wide variety of historical
artifacts. An archeologist has a grant from a local historical society to
collect and catelogue some of these valuable artifacts. This archeologist has
organized the artifacts by type.

You are asked by the archeologist to write a program that maintains an
inventory of the dig.

The following code segment updates the artifact catelogue.

Remember, the segment performs the operation correctly; any variables,
functions, and procedures have been correctly declared elsewhere.

found true;
done > false;
read (artifact-type);
while ((catelogue(OLnumber > 0) and (not done))

begin
f ir s t:-1;
lastcatelogue [OLnumber;
found :• false;
done :• true

end
while ((last >• first) and (not found)) do

begin
middle :• (first * last) div 2;
if (artifact-type < catelogue (middleLnumber)

then last :• middle -1
else if (artifact-type > catelogue (middleLnumber)

then first > middle * 1
else begin

catelogue (middleLquantity :•
catelogue (middleLquantity ♦ 1;

f o u n d t r u e
end

end

Rate how interesting you found this
problem/solution pair, on a sa le
from 'A“ lo T .

A - hi|t>ly oniateresiins
B
C
0
E • extremely intereiciflf

www.manaraa.com

125

APPENDIX C

SAMPLE CHARACTERISTICS

(N-93)
1. Age of subjects

100%

percent
of

sample

79.1
re

S
18.7

0.0
> n 2 2 00

<18 18-23 24-34 35-49 >50

2. Gender of subjects (N-91)

100 %

percent
“ ilesample 40.71

female

59.3s
__

male

3. Majors of subjects (N-93)

100%
percent

of
sample

19.8

pre
cs

72.5

cs

1.1

art/
sci

(not cs)

0.0
6.6

-EL
bus. other

www.manaraa.com

126

4. Grade point average (max - 4.0; N-93)

100%

percent
of

sample
35.2/38.6

26.4/31.8M | 1

1 a
22.0/20.5

J 3 L

□ - overall gpa

■ -major gpa

14.4/9.1

- N
>3.5 3.0-3.49 2.5-2.99 2.0-2.49

2 .2/0.0

< 2.0

5. Rank of subjects (N-92)

100%

percent
of

sample

1.1

19.6

_ a
Fr. Soph.

39.1
17.4 R 22.8

Jl__B. . H
Jr Sr Grad

6. Number of college level computer science courses completed (N-93)

100%

percent
of

sample

50.5

22.0 24.2

2.2 1.1

1 2 3 4-5 6 or more

7. Related work experience of subjects (N-93)

100%
62.0

percent
of

sample 14.1
6.5

.EL

13.0

none <1 yr >1 yr. <1 yr >1
(pt.time) (pt.time) (fl.time) (fl.time)

www.manaraa.com

127

7. Number of computer science courses in high school (N-93)

100%
60.4

percent
of S

sample *
0 5

none

17.6 15.4

il S. 4.4 2.2
1 sem 1 yr- 2yrs >2 yrs

8. Took Advanced Placement Computer Science Course (N-93)

100%

percent
of

sample

92.4

\
\
\

7.6
n >
yes no

9. Hours per week of programming for fun (N-93)

100%

percent
of

sample

57.6

15.2

H
17.4

7.6
n 2.2

0 1 2-5 5-15 >15

www.manaraa.com

128

Appendix D - Derivation of Prediction Framework

Loadings:

Novices

Factor 1
interest .04

p. class. -.01

s. class -.82

dis. rule .83

Facsimile of Plots:

fa nor 1

p.class

s.class d.ru

nterest

Experts

Factor 2 Factor 1 Factor 2
-.74 -.07 .81

.77 .00 .70

.08 .84 .10

.02 -.82 .18

www.manaraa.com

129

APPENDIX E

FACSIMILE OF DATA USED IN ANALYSIS OF COVARIANCE

o»s . «m n
3 . 1 9 5 4 5
2.0 (7 1
1 . 7 (2 4 1
2 . 7 1 3 0 4

h i m
3 .4 3 C 4 3
2 . 7 7 7 7 *
3 . 4 7 5 4 5
2 . (7 1 3 0
2.4(743
3 . 2 1 7 3 7

i: \nu
nil

1:UIU
1 . 5 4 5 (5

. 3 7 1 3 0
rllli?

w here:
DISRUL

o x x m

. . . J _

JCtCt*

1

.........

' |

.4— 1

- 1— I -

7I0C11

0
? .

SOLCLA

PROCLA = problem c l a s s i c a l ness

IMEAN = mean-per-item i n t e r e s t
PEMEAN = mean-per-item p re fe ren c e
DEGEXP = e x p e r t i s e leve l

XHC4H
3 . 0 4 1 4 7
2 . 5 (3 3 3
2 . 7 5 4 5 2
2 . 5 4 1 4 7
l . O i s I)
3 .1 2 5 C O
2 . 5 4 1 4 7
3 . 3 3 3 3
J:IK 7
i:!H«
h i m
j m i
2 .4 C 7 5 2
2 . 1 5 0 0 0

fciWlJ
I:2WH
l-AVAl
2 . 7 7 1 4 7

3 .2 5 C C 3

b u m
3 . 0 4 3 3 3

kKEH

CiCEX?

1
111

] }

d iscou rse ru le v io l a t i o n s t a t u s

so lu t io n c l a s s i c a ln e s s

(0=no v io la t io n s
1=1 o r more v io l s .

(O=low c l a s s .
l=not lo w -c la s s .)

(O=not high c l a s s .
l=high c l a s s .)

(l=novice
2=expert)

www.manaraa.com

Items:

1.21 - Thunder Storm
2.22 - Legislative Voting
3 .23 • Jewelry Store
4 .24 - Seawater
5 .25 - Lottery
6, 26 - Prices
7.27 - Quilting
8.28 - Toxic Substances
9 .29 - Test Grading
10, 30 - Archeology
11,31 - Library System
12, 3 2 - Jungle Escape
13, 33 - Weights
14, 34- South Pole
15.35 - Shoe Store
16.36 - Secret Code
17.37 - Rare Flora
18.38 - Arrange Houses
19.39 - Pet Poison
20, 40 - Contributions

www.manaraa.com

131

Experts:

APPENDIX F

Analysis of Covariance for Two Subject Groups

Model

Model =

F(15,4) = 6.70 p<.0027

Discourse Rule
Interest
S. Class.
P. Class

F = 3.95
F = 11.57
F = 4.87
F = 6.43

p<.0654
p<.0040
p<.0434
p<.0228

Novices:
Model F(15p4) = 7.95 p<.0012

Model= Discourse Rule F = 10.08 p<.0063
Interest F = 10.16 p<.0061
S. Class. F = 8.83 p<.0095
P. Class F = 2.73 p<.1195

www.manaraa.com

132

APPENDIX 6

EXPERT AND NOVICE FACTOR

DIMENSION

t 2 3 4

1 0 . 3 1 7 0 - 0 . 4 9 2 2 . 0 . 2 1 7 6 - 0 . 3 5 0 6
2 0 . 0 7 4 6 - 0 . 0 2 1 9 ! 0 . 4 6 9 i - 0 . 5 2 4 2 '
3 - 0 . 1 3 2 6 0 . 1 9 8 3 - 0 . 0 3 9 1 - 0 . 3 6 8 $.
4 - 0 . 3 5 8 7 ' 0 . 2 6 8 0 - 0 . 1 7 3 1 - 0 . 2 1 2 0
5 0 .0 0 0 5 - 0 . 0 1 7 2 0 . 0 4 1 1 -0 .4 3 1 1 ' -
6 - 0 . 6 3 2 6 • 0 . 0 3 6 6 0 . 1 3 1 8 0 . 1 3 2 3
7 - 0 . 0 6 2 7 0 . 0 6 4 3 0 .9 5 8 1 * ' 0 . 0 8 6 0
8 - 0 . 4 1 6 7 . 0 . 0 9 3 0 0 . 1 0 6 8 - 0 . 0 6 0 1
9 - 0 . 2 1 4 2 - 0 . 2 1 2 0 0 .4 2 2 4 V - 0 .2 0 I 2

10 0 . 0 1 4 9 0 . 7 2 0 6 • 0 . 0 0 6 0 - 0 . 3 9 9 1
11 - 0 . 0 7 9 9 - 0 . 1 1 6 5 0 . 3 4 4 0 - 0 . 1 0 6 8 .
12 - 0 . 0 6 9 4 0 .2 B 3 0 0 . 7 3 5 f* 0 .0 4 2 9
13 0 .2 6 9 7 0 . 0 2 0 4 -0 .1 8 7 7 -* ■ !> .3 9 9 0 ’
14 - 0 . 1 5 1 6 0 . 3 4 5 8 0 . 3 8 8 4 - 0 .0 1 9 9
15 - 0 . 3 3 0 6 - 0 . 1 0 9 3 ’ 0 . 1 S 3 9 - (0 .3 5 3 9 •
16 - 0 . 4 0 0 6 O. 1014 - 0 . 1 0 1 7 - 0 . 4 4 4 9
17 - 0 . 0 5 3 6 0 . 3 4 9 3 0 . 0 3 3 2 - 0 . 0 3 9 9
16 0 . 1 1 2 0 - 0 . 0 9 9 1 0 . 2 8 7 5 0 . 0 6 1 5
19 - 0 . 3 3 9 9 -0 .7 5 8 7 * * 0 .0 9 5 1 - 0 . 3 1 5 4
ao - 0 . 7 9 5 3 > 0 . 0 4 0 6 - 0 . 0 1 4 1 - 0 . 0 1 7 9

D IM EN SIO N

t a

1 -0.2880 -0.1184
2 -0.3061 -0.1118
3 -0.0792 0.0223
4 -0.0677 0.0611
5 -0.0976 -0.2107
6 -0.0905 -0.6671
7 -0.2528 0.0111
8 -0.3884 0.0814
9 -0 .4 6 3 7 -0 .1 1 6 1

10 -0.0001 -0.0448
11 -0.0672 0.0833
12 -0.5445’ 0.1242
13 -0.5426 -0.2028
14 0.0380 -0.0527
IS ->-0.3959 -0.1655
16 0.0027 -0.2002
17 -0.51461 0.0289
19 -0.5230-.-0.2608
19 0.1523 -0.1237
20 -0.1020 -0.9S9C-

ROOT- 1.96 1.69

3 4 9

0.7176i 0.0924 0.0698
-0.2644 -0.4842. >0.1184
0.0626 -0.1934 -0.617S
0.1962 -0.6090.’.-0.0841
0.0115 - 0 .6362-.-0.0938
0.1464 -0.1769 0.0199

-0.1216 -0.1297 -0.1292
0.2262 0.0377 -0.2934-
0.3911 -0.2863 0.1318

-0.1923 -0.4628 <-0.0729
0.2490 0.2167 -0.2167.
0.0921 0.0174’ 0.1494

-0.1030 -0.1469 -0.1218
0.0023 -0.0681 -0.7741.
0.0843 0.0692 -0.0370
0.3228 -0.2683 >-0.3795’
0.0333 -0.0763 0.0364’

■0.2036 -0 .1370 -0.3174
0 .7 4 2 7 ' 0.0161 -0.2314
0.0387 -0.0394 -0.0461

1.68 1.57 1.53

LOADINGS

Expert Loadings

Novice Loadings

www.manaraa.com

BIBLIOGRAPHY

www.manaraa.com

134

BIBLIOGRAPHY

Adelson, B. (1984). When Novices Surpass Experts: The
Difficulty of a task May Increase with Expertise. Jo u rn a l
oi Exp.gr,i m en ta l Ps.ychQlo.qy: L aarn inq , M em ory, a n d
C ognition . 10. 483-495.

Arblaster, A.T. (1983). The Evaluation of a Programming
Support Environment, in T.R.G. Green, S.J. Payne, & van der
Veer, G .c . (Eds.), I h e Psychology o f Camp,uteE U se- (pp.
191-221). New York: Academic Press.

Bentley, J. (1986). Literate Programming. C om m unications of
lh& ACM, 23., 364-369.

Black, J.B. (1984). Understanding and Remembering Stories,
in J.R. Anderson, J.R. and S.M Kosslyn (Eds.), Tutorials in
Learning a nd Memory : E ssavs in Honor of Gordon Bower, (pp.
235-255). San Francisco: W.H. Freeman and Company.

Black, J.B., & Bern, H. (1981). Causal Coherence and Memory
for Events in Narratives. Journal of Verbal Learning and
Verbal B ehavior. 20. 267-275.

Black, J.B., Galambos, J.A., & Read, S.J. (1984).
Comprehending Stories and Social Situations, in R.S. Wyer
and T.K. Srull (Eds.), Handbook of Social Cognition. 3 (pp.
45-86). Hillsdale, NJ: Lawrence Erlbaum A ssociates, Inc.

Blalock, H.M. (1979). Social S ta tis tics . 2nd Edition. New
York: McGraw-Hill, Inc.

Brooks, R.E. (1980). Studying Programmer Behavior
Experimentally: The Problems of Proper Methodology.
C om m unications of the ACM. 23. 207-213.

www.manaraa.com

135

Chi, Feltovich, P.J., & Glaser, R. (1981).
Categorization and Representation of Physics Problems by
Experts and Novices. Cognitive S c ien c e . 5. 121-125.

Child, 0 . (1973). The E ssen tia ls of F actor A nalysis. New
York: Holt, Rinehart and Winston.

Child, I.L. (1981). B ases of Transcultural Agreement in
R esponse to Art. in H.l Day (Ed.), A dvances in Intrinsic
Motivation and A esthetics, (pp. 415-432). New York: Plenum
Press.

Cioch, F.A. (1985). Software U nderstandability : A n
Empirical S tudy . Unpublished doctoral dissertation, The
University of Michigan, Ann Arbor, Ml.

Crazier, J.B. (1981). Information Theory and Melodic
Perception: In Search of the Aesthetic Engram. in H.l. Day
(Ed.), A dvances in Intrinsic Motivation and A esth e tics .
(pp. 433- 461). New York: Plenum Press.

Dale, N., & Orshalick, D. (1983). Introduction to PASCAL and
Structured Design. Lexington, MA: D.C. Heath and Company.

Daniel, T.C., & Vining, J. (1983). Methodological Issues in
A ssessm ent of Landscape Quality, in I. Altman and J.F.
Wohiwiii (Eds.), B fihavior a n d th e N atu ral E nv ironm e n t - (pp.
39-84). New York: Plenum.

Dzida, W., Herda, S., & Itzfeldt, W.D. (1978).
User-Perceived Quality of Interactive System s. IEEE
T ransactions on Softw are E n g in eerin g . SE-4. 270-276.

Egan, D.E., & Schwartz, B.J. (1979). Chunking in Recall of
Symbolic Drawings. Memory a n d Cognition. 7. 149-158.

Gelman, E., Rogers, M., Lubenow, G.C., Marbach, W.D.,
Friday, C., & Cook, W.J. (1985). Showdown in Silicon
Valley. N ew sw eek . CVI. 46-50.

www.manaraa.com

136

Gilfoil, D.M. (1982). Warming Up to Computers: A Study of
Cognitive and Affective Interaction Over Time, in
Proceedings Human Factors in Com otuer S y s tem s.
Gaithersburg, MD. (pp. 245-253).

Hagglund, S.L., & Tibell, R. Multi-Style Dialogues and
Control Independence in Interactive Software, in T.R.G.
Green, S.J. Payne, and G.C. van der Veer (Eds.), The
Psychology of Com puter U se , (pp. 171-189). New York:
Academic Press.

Hamming, R.W. (1980). The Unreasonable Effectiveness of
M athematics. T he Am erican M athem atical Monthly. 87. 81-90.

Hare, F.G. (1981). Recent Developments in Experimental
Aesthetics: A Summary of Berlyne Laboratory Research
Activities, 1974-1977. in H.l. Day (Ed.), A dvances in
Intrinsic Motivation and A e sth e tic s , (pp. 487-500). New
York: Plenum Press.

Harman, H.H. (1976). Modern Factor Analysis. 3rd e d .
Chicago: University of Chicago Press.

Hayes, J.R., & Simon, H.A. (1976). The Understanding
Process: Problem Isomorphs. Cognitive Psychology, a ,
165-190 .

Herzog, T.R., & Larwin, D.A. (unpubl.). The Appreciation of
Humor in Captioned Cartoons.

Huttenlocher, J. (1976). Language and Intellegence. in L.B.
Resnick '(Ed.), The Nature of In tellegence. Hillsdale, NJ:
Erlbaum.

Jeffries, R., Turner, A.A., Poison, P.G., Atwood, M.E.
(1981). The P rocesses Involved in Designing Software, in
J.R . Anderson (Ed.), Cognitive Skills and their
A cquisition, (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum
A ssoc ia tes.

www.manaraa.com

137

Kahney, H. (1983). What Do Novice Programmers Know about
Recursion, in P roceedings CHl"83 Hum an Factors in Com puter
S y s tem s. Boston, MA. (pp. 235-239).

Kaplan, R. (1975). A Strategy for Dimensional Analysis, in
D.H. Carson (Ed.), Man-Environmental Interactions:
Evaluations and A pplications, (pp. 66-68). : Dowden,
Hutchinson & Ross.

Kaplan, S. (1987). Aesthetics, Affect, and Cognition:
Environmental Preference from an Evolutionary Perspective.
Environm ent and Behavior. 12..

Kaplan, S. (1977). Participation in the design process: A
cognitive approach, in D. Stokals (Ed.), Perspective on
environm ent and behavior, (pp. ch. 10). New York: Plenum.

Kaplan, S. (1978). Perception of an uncertain environment,
in S. Kaplan and R. Kaplan ((Eds.).), H um anscape:
Environm ents for Peop le . Belmont, CA: Duxbury.

Kaplan, S., & Kaplan, R. (1982). Cognition and Environment.
New York: Praeger.

Kernighan, B., & Plauger, P. (1978). The E lem ents of Stvle.
New York: McGraw Hill Co.

Larkin, J.H. (1983). The Role of Problem Representation in
Physics, in D. Gentner and A.L. Stevens. (Eds.), Mental
M odels, (pp. 75-98). Hillsdale, NJ: Lawrence Erlbaum
A ssocia tes.

Leventhal, L.M., & Mynatt, B.T. (in press). Components of
Typical Undergraduate C ourses in Software Engineering:
Results from a Survey. IEEE T ransactions on Software
Engineering.

www.manaraa.com

138

Lewis, C. (1981). Skill in Algebra, in J. R. Anderson (Ed.),
Cognitive Skills and Their A cquisition, (pp. 85-110).
Hillsdale, NJ: Erlbaum.

Lingoes, J.C . (1972). A General Survey of the
Guttman-Lingoes Nonmetric Program Series, in R.N. Shepard,
A.K. Romney, and S.B. Nerlove (Eds.), Multidimensional
Scaling. 1 New York: Seminar.

Luria, A.R. (1973). The Working Brain. : Penguin.

M aass, S. (1983). Why Systems Transparency, in T.R.G. Green,
S.J. Payne,and G.C. van der Veer (Eds.), The Psychology of
Com puter U se , (pp. 19-28). New York: Academic Press.

Malone, T.W. (1981). Toward a Theory of Intrinsically
Motivating Instruction. Cognitive S c ien c e . 4 . 333-369.

McKeithen, K.B., Reitman, J.S., Reuter, H.H., & Hirtle, S.C.
(1981). Knowledge Organization and Skill Differences in
Com puter Programmers. Cognitive Psychology. 13. 307-325.

Moher, T., & Schneider, G.M. (1982). Methodology and
Experimental Research in Software Engineering.
International Journal of M an-M achine S tu d ie s . 16. 65-87.

Moher, T., & Schneider, G.M. (1981). Methods for Improving
Controlled Experimentation in Software Engineering, in
P ro ceed in g s of the 5th International C onference on
.S Q .fte re Engineering, (pp. 224-233) . : ie e e .

Molzberger, P. (1983). Aesthetics and Programming, in
PjQ C aarfinas CHC33, Human Factors in Computing S y s tem s.
Boston, MA. (pp. 247-250). New York: ACM.

Molzberger, P. (1984). T ranscending the B asic Paradigm of
Softw are Engineering. (Bericht Nr. 8405). Neubiberg:
Hochschule der Bundeswehr Monchen .

www.manaraa.com

139

Moran, T. (1981). Guest Editor's Introduction ... An Applied
Psychology of the User. Com puting S u rv ey s . 13. 1-11.

Moynihan, C., & Mehrabian, A. (1981). The Psychological
Aesthetics of Narrative Forms, in H.l. Day (Ed.), A dvances
in Intrinsic Motivation an d A e s th e tic s , (pp. 323-340). New
York: Plenum Press.

Mynatt, B. T. (1984). The effect of sem antic complexity on
the comprehension of program modules. International Journa l
of M an-M achine S tudies. 21. 91-103.

Nelson, D.L., & Castano, D. (1984). Mental Representations
for Pictures and Words: Sam e or Different. American
Jo u rn a l of P sychology . 97 . 1-15.

Newell, A., & Simon, H.A. (1972). Hum an Problem Solving.
Englewood Cliffs, NJ: Prentice-Hall.

Nicki, R.M. (1981). Ambiguity, Complexity, and Preference
for Works of Art. in H.l. Day (Ed.), A dvances in Intrinsic
Motivation and A esthetics, (pp. 365-383). New York: Plenum
P ress.

Rushinek, A., & Rushinek, S.F. (1986). What Makes Users
Happy. Com m unications of the ACM. 29. 594-598.

Savitch, W.J. (1984). PASCAL: An Introduction to the Art
and Science of Programming. Menlo Park, CA: The
Benjamin/Cummings Publishing Co., Inc.

Sayward, F.G. (1984). Experimental Design Methodolgies in
Software Science. Information P ro c ess and M anagem ent. 20.
2 2 3 -2 2 7 .

Sengler, H.E. (1983). A Model of Understandability of a
Program and Its Impact on the Design of the Programming
Language GRADE, in T.R.G. Green, S.J. Payne.and G.C. van

91-106). New York: Academic Press.

www.manaraa.com

140

Sheil, B.A. (1981). The Psychological Study of Programming.
Com puting Surveys. 13. 101-120.

Shneiderm an, B. (1976). Exploratory Experiments in
Program m er Behavior. International Journal of C om puter and
Inform ation S c ie n c e s . 5. 123-143.

Shneiderm an, B. (1979). Human Factors Experiments in
Designing Interactive System s. C om puter. 9-19.

Soloway, E., Ehrlich, K., & Black, J.B. (1983). Beyond
Numbers: Don't Ask "How Many". . . Ask "Why", in
P roceedings CHI’83 Human Factors in Com puter S y s tem s.
Boston, (pp. 240-246).

Soloway, E., Ehrlich, K., & Bonar, J. (1982). Tapping into
Tacit Programming Knowledge, in P roceed ings Hum an Factors
In Com puting S y stem s. Gaithersburg, MD. (pp. 52-58).

Soloway, E., & Ehrlich, K. (1984). Empirical Studies of
Programming Knowledge. IEEE Transactions on Softw are
E ngineering , SE.-1A, 595-609.

Spohrer, J.C., Pope, E., Lipman, M., Sack, W., Freiman, S.,
/Littman, D., Johnson, L„ & Soloway, E. (1985). Bug
Catalogue II, III, IV. (YALEU/CSD/RR #386). New Haven, CT.

Voss, J.F., Tyler, S.W., & Yengo, L.A. (1983). Individual
Differences in the Solving of Social Science Problems, in
R.F. Dillon, & R.R. Schmeck (Eds.), Individual Differences
in Cognition. 1 (pp. 205-232). : Academic Press.

Walker, E.L. (1981). The Quest for the Inverted U. in H.l.
Day (Ed.), A dvances in Intrinsic Motivation and A esth e tics ,
(pp. 39-70). New York: Plenum Press.

W eiser, M.D. (1979). Program S lices: Form al. Psychological.
an d P ractica l Investigations of an A utom atic P rogram
A bstraction M ethod. Unpublished doctoral dissertation, The
University of Michigan, Ann Arbor, Ml.

www.manaraa.com

141

W eiser, M., & Shertz, J. (1983). Programming Problem
Representation in Novice and Expert Programmers.
In ternational Jou rna l of M an-M achine S tu d ies . 19. 391-398.

Wildt, A.R., & Ahtola, O.T. (1978). Analysis of Covariance.
(E.M. Uslaner, Ed.) (Paper Series on Quantitative
Applications in the Social Sciences Series num ber 07-012).
Beverly Hills, CA: S age Publications.

Zajonc, R.B. (1980). Feeling and Thinking: Preferences Need
No Inferences. A m erican P sycho log ist. 35. 151-175.

